Web interactive plots in R

Yu Han Soh
Supervisors: Paul Murrell and Chris Wild

October 30, 2017

/5272

Bachelor of Science (Honours)
Department of Statistics
The University of Auckland
New Zealand

Abstract

Web interactive graphics have become popular for sharing exploratory data analysis. There
are many approaches for creating web interactive graphics, however, they are limited and do
not allow users to customise and introduce interactions that were not specifically planned for
by these systems. This report gives an overview of existing tools for creating web interactive
plots before developing and discussing a more flexible solution called interactr, a prototype
package that allows users to customise interactions on plots produced in R and aims to remove
the need for understanding how web technologies work.

ii

Executive Summary

Interactive statistical graphics have been achieved through desktop applications since the 90’s.
However, they are generally inaccessible to users and require special software to be installed
and as a result, results are hard to reproduce and share. Recently, new tools have focused on
using the web as a platform to solve this but they do not possess the capabilities that these
desktop applications have.

The purpose of this research is to make progress towards designing and prototyping a more
extensible infrastructure for creating web interactive graphics in R. The motivation behind this
research comes from the idea of creating interactive plots with iNZight, a data visualisation
software from the University of Auckland.

An overview of modern web tools were investigated including plotly, ggvis, shiny and animint.
It is easy to achieve certain interactions, but hard to extend beyond their capabilities without
a deeper understanding of these packages and lower level coding. This makes it inaccessible to
the majority of users. Furthermore, many online systems have a tendency to redraw everything
every time any graphical element is changed. This leads to unnecessary computations and a
slow experience to users.

A different approach was taken by investigating lower level tools, specifically gridSVG and
DOM. These tools are extensible, however, to use them effectively requires a knowledge about
how the grid system works with gridSVG and web technologies including the Document Object
Model. This presents a steeper learning curve than using plotly and ggvis, and consequently a
trade off - to achieve custom interactions, a user would be required to know how to link all
these tools together, where as other tools are easier to use but cannot be extended further.

To solve this, we have developed a new approach by combining lower level tools (grid, gridSVG
and DOM) to create the interactr package. This is designed to create simple interactive plots
in R without a steep learning curve. It is based upon a simple idea of knowing what object to
target, what kind of interaction to attach to which objects and defining what happens after an
interaction is initiated. To test this idea, we implemented and recreated simple examples that
were compatible with other plotting systems including those made with graphics, lattice, and

ggplot2.

iii

iv

The interactr package stands out as it brings interactivity to plots that were originally generated
in R. However, it only serves as a proof-of-concept. It presents several limitations including
that only objects originally drawn in R can be used and that only a few interactions have been
achieved. It is currently not shareable in a multi-user environment nor ready for production
purposes.

The future of web interactive statistical graphics remains dynamic as many of these tools
are developing over time. It is possible that the interactr package may become a solution
for allowing users to control interactions more easily on plots in R and thus for iNZight, but
requires more attention and development for creating more sophisticated and stable visuals.

Acknowledgements

Thank you to Dr. Paul Murrell for his technical expertise and witty analogies that helped me
understand the concepts and challenges of research and software development. Thank you for
being an inspirational role model to allow me to become a better programmer.

Thank you to Prof. Chris Wild for introducing me to the idea of interactive graphics, for
inspiring me to investigate further into this topic for iNZight and for my own interests. Thank
you for sharing ideas and challenging me further.

This project would not have been possible without their dedicated supervision and support. I
hope that it has helped them in their own research and inspires others to have fun making
their own interactive visuals in R.

Contents

Abstract
Executive Summary
Acknowledgements

1 Introduction
1.1 The need for interactive graphics L L.
1.2 The web and its main technologies
1.3 Motivational problem Lo o

2 An overview of tools for achieving web interactive plots in R

2.1 plotly . . . e

2.1.1 Extending interactivity with crosstalk
2.2 gEVIS . .o e
2.3 shiny oL e

2.3.1 Imteractivity with shiny
2.3.2 Linking plotly or ggvis with shiny
2.4 animint Lo
2.5 Summary ...

3 Interactive R plots using lower level tools
3.1 gridSVG . . . e
3.1.1 Customising simple plot interactions
3.1.2 Preventing redraws in shiny using JavaScript messages and gridSVG . .
3.2 DOM package e
3.2.1 Comparing DOM toshiny

4 Designing a more flexible way of producing simple interactions
4.1 The main idea using grid, gridSVG and DOM
4.2 Examples e e
4.2.1 Linking box plots L L
4.2.2 Changing the degree of smoothing of a trend line
4.3 Compatibility with other graphics systems

vi

ii

iii

CONTENTS vii

4.3.1 graphicsplots 46

4.3.2 geplot2 . . . 49

5 Discussion 52
5.1 Advantages 52

5.2 Limitations e e e e e 53
5.3 Comparison to existing tools Lo oL o 58
5.4 Future directions e e e 62
5.5 Conclusion e 62
5.6 Additional resources 62

List of Figures

2.1 A plotly plot of the iris dataset
2.2 Linked brushing between two plotly plots and a data table.
2.3 Additional filtering and selection tabs using crosstalk
2.4 A scatterplot matrix based upon the first five variables in the mtcars dataset
2.5 A basic ggvis plot with tooltips L
2.6 Change a trend line with a slider and filters using ggvis alone
2.7 A diagram showing how an input affects an output (slider to plot)
2.8 A simplistic shiny application that has a slider to control the smoothness of the
trend line
2.9 Facetted ggplot with linked brushing and hovers
2.10 A lattice plot that fails to produce correct mapping
2.11 A shiny application with a plotly plot with linked brushing
2.12 An example of linked brushing between ggvis plots
2.13 An animint example linking a bar plot by gender to weekly hours and income
from the nzincome data set L.

3.1 An interactive circle made using gridSVG - when the user hovers over the circle,
it will turn red (shown on the right)
3.2 A lattice plot of the relationship between speed and stopping distance of cars
that is further exported as an SVG using gridSVG
3.3 An example of a customised box plot interaction on an iNZight plot using
gridSVG, JavaScripto
3.4 Diagram of how things work using shiny’s JavaScript functions in Figure 3.4 . .
3.5 A replica of Figure 2.7, but only the trendline changes
3.6 Select over a set a points to show a smoother
3.7 Simple diagram showing how DOM works with from replicating Figure 3.1 . . .
3.8 DOM example of Figure 3.1 - when hovered, the circle turns red (right)
3.9 Steps on how a trend line can be altered using the DOM package
3.10 DOM example of Figure 3.5 for changing a trend line using a slider

4.1 grid, gridSVG and DOM in the process
4.2 Producingaboxplotin R
4.3 Boxplot (left) that turns red when hovered (right)
4.4 Boxplot and scatter plot on the same webpage

viii

28
29

LIST OF FIGURES ix

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
0.4
5.5
5.6
5.7

Click on box plot to light up points on scatter plot 38
All three plots on the same web page, 39
A single click on the box plot links the density and scatterplot together 41
Plot with slider 42
Plot with slider that controls the smoothness of the trend line 44
Plot that has a selection box feature that draws a separate smoother 45
An example of a graphics plot that is converted into a grid plot using gridGraphics 47
Box plot example replicated using a graphics plot 49
Box plot example replicated using a plot rendered with ggplot2 50
Different selections (left) recompute different densities (right) with interactr . . 53
Listing the elements of a plot using lattice 55
Listing the elements of a plot using ggplot2 56
Control density bandwidth with interactr 59
Control density bandwidth with ggvis 60
Control density bandwidth with shiny 60

Control density bandwidth using plotly (rendered with ggplot2) and shiny . . . 61

Chapter 1

Introduction

The purpose of this report is to investigate current solutions for creating web interactive data
visualisations in R before designing a more flexible approach for customising interactions onto
plots.

1.1 The need for interactive graphics

Interactive graphics have become popular in helping users explore data freely and explaining
topics to a wider audience. As Murray [2013] suggests, static visualisations can only ‘offer pre-
composed views of data’, whereas interactive plots can provide us with different perspectives.
Being able to interact with a plot allows us to explore data, discover trends and relationships
that cannot be seen with a static graph. The importance of using interactive graphics to
enhance exploratory data analysis is evident across different fields, from identifying missing
values and pinpointing outliers to cluster analysis and classification problems [Cook and
Swayne, 2007].

The term “interactive graphics” can have different meanings. Theus (1996) and Unwin (1999)
(as cited in Unwin et al. [2006]) have suggested that there are 3 broad components: querying,
selection and linking, and varying plot characteristics. Querying involves finding out more
about features that the user may be interested in, selection and linking involves subsetting
a certain group and linking to different displays of the same data set, while varying plot
characteristics involve changing parts of the plot to get more information which could include
“rescaling, zooming, reordering and reshading” [Unwin et al., 2006]. Together, these encapsulate
the concept of interactive graphics with a certain goal of informing the user more about patterns
and relationships that they may be interested in.

In this work, we will also make a distinction between interactions that are done directly on to

1.2. THE WEB AND ITS MAIN TECHNOLOGIES 2

the plot and those that are controlled by an indirect component. We can refer this to on-plot
and off-plot interactivity. On-plot interactivity refers to when a user can interact directly
using capabilities that are incorporated within the plot itself to query, select and explore the
data. These include clicking and creating drag-boxes to select components of a plot. Off-plot
interactivity refers to interactions that are driven from outside of the plot, such as a slider to
control certain plot characteristics and using dropdown menus to filter and select groups.

R [Ihaka and Gentleman, 1996] is a powerful open source tool for generating flexible static
graphics. However, it is not focused on interactivity. Previously, there have been different
programs to help create interactive plots to aid analysis including ggobi [Cook and Swayne,
2007], iplots [Urbanek and Wichtrey, 2013], and Mondrian [Theus, 2002]. Despite their
capabilities, all these require installation of software which makes it difficult to share and
reproduce results. More recently, new visualisation tools have begun to use the web browser
to render plots and drive interactivity.

1.2 The web and its main technologies

The web is an ideal platform for communicating and exchanging information in the present day.
It has become accessible to everyone without the worries of device compatibility and installation.
Web interactive visualisations are becoming more commonly used in areas including data
journalism, informative dashboards for business analytics and decision making, and education.
They will be increasingly in demand in the future.

The main web technologies are HTML, CSS and JavaScript. Hyper Text Markup Language
(known as HTML) is the language used to describe content on a webpage and cascading style
sheets (known as CSS) is the language that controls how elements look and are presented
on a web page such as colour, shape, strokes and fills, borders [W3C, 2016]. These can be
used to define how specific types of elements are rendered on the page. JavaScript is the main
programming language for the web [Crockford, 2008], which is used to add interactivity to
web pages. Whenever we interact with a website that has a button to click on or hover over
text, these are driven by JavaScript.

The Document Object Model (known as the DOM) is the ‘programming interface for HTML
and XML documents’ [W3C, 2009]. A single web page can be considered as a document made
up of nodes and objects with a certain structure. We can use the DOM to refer to specific
elements, attributes and nodes on the page that we wish to modify. We can use JavaScript
and the DOM to create and change a dynamic web page.

Application programming interfaces (APIs) are defined as a set of tools that help developers
connect and build applications [Jacobson et al., 2011]. For example, when we see a map
from Google Maps embedded in a web page, that web page is calling the GoogleMaps API
to provide the map. Through the context of this report, APIs generally refer to JavaScript
libraries that are called upon and used to render plots.

1.3. MOTIVATIONAL PROBLEM 3

Many interactive visuals on the web are generally rendered using Scalable Vector Graphics
(known as SVG). This XML based format is widely used because it is easy to attach events
and interactions to certain elements and sub-components through the DOM. This cannot be
done with a raster image such as a PNG or JPEG format, as a raster image is treated as an
entire element.

1.3 Motivational problem

The main motivation for this project arises from whether there are more intuitive ways to
generate simple interactive visuals from R without the user having to learn many tools. One
of many downstream users would like to advance features in iNZight [Elliott and Kuper, 2017],
a data visualisation software from the University of Auckland.

The approach taken by this dissertation is first to identify and assess the limitations of existing
tools for creating web interactive visuals in R (Chapters 2 and 3). Key limitations that were
found were (1) a tendency to reproduce entire plots, (2) the inability to customise interactions
and add certain layers to a plot and (3) a need for learning web technologies and respective
APIs. This led us to a design and prototype a viable solution (discussed in Chapters 4 and 5)
that could potentially solve these limitations and the overall problem.

Chapter 2

An overview of tools for achieving
web interactive plots in R

There are many R packages that create different interactive data visualisations. Many of
these connect R to specific JavaScript libraries. These include Leaflet [Cheng et al., 2017] for
rendering interactive maps and many popular graphing libraries including highcharter [Kunst,
2017], rbokeh [Hafen and Continuum Analytics, 2016], googleVis [Gesmann and de Castillo,
2011] and the rCharts [Vaidyanathan, 2013] package. These generate interactive plots or
widgets known as htmlwidgets that can be viewed on a web page. Other tools use R rather
than JavaScript to drive interactivity, including ggvis [Chang and Wickham, 2016] and shiny
[Chang et al., 2017]. The few that are discussed in this section in detail are plotly [Sievert
et al.], ggvis, shiny, and animint [Hocking et al., 2017].

2.1 plotly

plotly.js is a JavaScript graphing library built upon D3 [Bostock et al., 2011]. The plotly
package in R calls upon this library to render web interactive plots. The purpose of plotly in R
is to provide a convenient way of creating interactive data visualisations [Sievert, 2017a]. With
its API, we can generate a standard plot that can be shared and saved as an interactive HTML
web page. One of the reasons why the plotly R package is useful is that it can automatically
convert plots rendered in the very popular ggplot2 [Wickham, 2009] package into interactive
plots by simply applying the ggplotly () function to the plot drawn (see Figure 2.4). It
provides basic interactivity including tooltips, zooming and panning, selection of points, and
subsetting groups of data as seen in Figure 2.1. We can also create and combine plots together
using the subplot () function, allowing users to create facetted plots manually or combine
different sets of types of plots together.

2.1. PLOTLY)

@ - i
8 setosa
versicolor
virginica
7.5
7
< 6.5
o
c
o]
=
o 6 (3, 6)
=%
(o)
0
5.5
5
4.5
2 2.5 3 3.5 4 4.5
Sepal.Width

Figure 2.1: A plotly plot of the iris dataset

plotly::plot_ly(data = iris, x = ~Sepal.Width,
y = ~Sepal.Length, color = ~Species,
type = "scatter", mode = "markers")

Like many other htmlwidgets, plotly can provide interactive plots quickly to the user with
basic functionalities such as tooltips, zooming and subsetting. In plotly, there are a lot of
features for building different plots. However, while we can build upon layers of plot objects,
they cannot be pulled apart or modified without re-plotting. These plots natively do not
provide more information about the data nor be linked to any other plot. However, this can
be achieved by combining these widgets with crosstalk (Section 2.1.1) or shiny (Section 2.3).

It is difficult to customise interactions without a knowledge of the D3, JavaScript and the use
of the onRender function from the htmlwidgets package. The other difficulty for the majority
of users is knowing which elements to target and how it has been defined on the page. Sievert
[2017a] has shown an example of how a set of scatter points drawn with plotly can be selected
via clicking which are linked to a google search page.

plotly is constantly being developed. As of writing, it has begun to expand on different methods
of linking different views of plots and is able to create animated plots[Sievert, 2017a].

2.1. PLOTLY 6

2.1.1 Extending interactivity with crosstalk

crosstalk [Cheng, 2016] is an add-on package that allows htmlwidgets to communicate with
each other. As Cheng [2016] explains, it is designed to link and co-ordinate different views of
the same data. Data is converted into a R6 SharedData object, which has a corresponding
key for each row observation. When selection occurs, crosstalk communicates which keys have
been selected and these widgets will respond accordingly. This all happens on the browser,
where crosstalk acts as a ‘messenger’ between these widgets.

- i,
45
2.5 setosa
versicolor
4 virginica
2 g
setosa
3.5 versicolor
1.5
virginica
3 versicolor
1 virginica
versicolor
virgi
s ginica
0.5
2
0
2 4 6 5 6 7 8
Show| 10 7 |entries Search:
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
51 7 82 4.7 14 versicolor
52 6.4 32 4.5 15 versicolor
53 6.9 311 4.9 15 versicolor
55 6.5 238 4.6 15 versicolor
56 5874 238 4.5 13 versicolor
57 6.3 33 4.7 16 versicolor
59 6.6 29 4.6 13 versicolor
62 5.9 3 4.2 15 versicolor
64 6.1 29 4.7 14 versicolor
66 6.7 31 4.4 14 versicolor

Showing 1 to 10 of 45 entries (filtered from 150 total entries) Previous 2 3 4 5 Next

Figure 2.2: Linked brushing between two plotly plots and a data table

#transform our data into a shared object
shared_iris <- SharedData$new(iris)
#generate plots
pl <- plot_ly(shared_iris, x = ~Petal.Length,
y = ~Petal.Width, color = ~Species, type = "scatter")
p2 <- plot_ly(shared_iris, x = ~Sepal.LlLength,
y = ~Sepal.Width, color = ~Species, type='"scatter")
#layout the plots on the page, along with the data table
p <- subplot(pl, p2)

2.1. PLOTLY 7

bscols(
widths = 12, #need to scale accordingly
P>
datatable(shared_iris)
)

In Figure 2.2, we have linked two plots generated by plotly with a table generated by the DT
[Xie, 2016] package. When we select over a set of points in one of the plots, the table will
respond by filtering all the points that have been selected and this selection is also highlighted
on the other plot. Similarly, if we highlight on the other plot, that selection should change
and be updated. This creates a form of multi-directional linking between different views of
the iris data set.

Gender
Female # Male Male

Weekly Hours 2500

)

2000

Ethnicity

[N
wu
=3
o

MaoriCombin

weekly_income

[
o
=3
]

500

20 40 60 80
weekly_hrs

Figure 2.3: Additional filtering and selection tabs using crosstalk

shared_income <- SharedData$new(income)

bscols(
widths = 6,
list(filter_checkbox("sex", "Gender", shared income, ~sex, inline = TRUE),

filter_slider("weekly_hrs", "Weekly Hours", shared_income, ~weekly_hrs),
filter_select("ethnicity", "Ethnicity", shared_income, ~ethnicity)),
plot_ly(shared_income, x = ~weekly_hrs, y = ~weekly_income,
color = ~sex, type = "scatter", mode = "markers")

In Figure 2.3, crosstalk can also be used for filtering. We can add specific inputs for filtering
parts of our data set using sliders, checkboxes, and dropdown menus to allow more control
over how we can subset and query our data.

However, crosstalk has several limitations. As Cheng [2016] points out, the current interactions

2.1. PLOTLY 8

that it supports are only linked brushing (Figure 2.2) and filtering (Figure 2.3) that can only
be done on a single data set in a ‘row-observation’ format. This means that it cannot be used
on aggregate data such as linking a density plot to a scatterplot, as illustrated in Figure 2.4
below. When we select over points over the scatterplot matrix, the density curves do not
change as it cannot convert the selection into aggregated data.

E - A,
Cor : -0.848 Cor : -0.776 Cor : 0.681
4: -0.805 4: -0.524 4: 0.424
6: 0.103 6: -0.127 6: 0.115
8:-0.52 8: -0.284 8: 0.0479
o] e o
—
O e
Cor : -0.71
a 4: -0.5
2 6: -0.831
8: -0.0922
Cor : -0.449
4: -0.47
g S 6: 0.217
. ® = 8: 0.668
5.0- o GiZ3Miz3EIZE @ °
4.5 | - [] ®
= [] ® m__ - L (]
B a0 e o Se L]
S 35 '..." v W ETTe < e® ‘*.' .
AN T S T L
10 15 20 25 30 350123D123491234 100200300400 100 200 300 3.0 3.54.04.55.0
mpg disp hp drat

Figure 2.4: A scatterplot matrix based upon the first five variables in the mtcars dataset

mtcars$cyl <- as.factor(mtcars$cyl)

shared_cars <- SharedData$new(mtcars[1:5])

pl <- GGally::ggpairs(shared_cars, aes(color = cyl))
ggplotly (pl)

Sievert [2017a] explains that the densities do not update because there are no tools available
in the plotly. js library or in the browser to recompute these densities. Similarly, aggregated
displays including bar plots and box plots are not updated. However, it may be possible in
a client-server framework such as shiny (discussed later in Section 2.3), where we can call
upon R to do the calculation. Because the plotly. js library recently has support for certain
statistical functions that can aggregate data, plotly has expanded beyond linking between
row-observation data. As of writing, these are still being continually developed. One of the
main limitations of using crosstalk together with plotly is speed - there is a certain time lag
before a user completes their query [Sievert, 2017a].

crosstalk only supports a limited number of htmlwidgets so far - plotly, DT and Leaflet [Cheng,
2016]. This is because the implementation of crosstalk is relatively complex. From a developer’s
point of view, it requires creating bindings between crosstalk and the htmlwidget itself and
customizing interactions accordingly on how it reacts upon selection and filtering. Despite being

2.2. GGVIS 9

under development, it is recognised as being very promising. Other htmlwidget developers
(notably, Kunst with highcharter [2017] and Hafen[2016] with rbokeh) have expressed interest
in linking their packages with crosstalk to create more informative visualisations.

2.2 ggvis

Another common data visualisation package is ggvis [Chang and Wickham, 2016]. This package
utilises the Vega JavaScript library [Trifacta, 2014] to render its plots and uses the shiny
framework to drive its interactions from R. It aims to be an interactive visualisation tool for
exploratory analysis while following the “Grammar of Graphics” [Wilkinson, 2005], similar
to ggplot2 for static plots. It has an advantage over htmlwidgets as it expands upon using
statistical functions for plotting, such as layer_model_predictions() for drawing trend lines
using statistical modelling (see Figure 2.6 which shows the fitting of a smoother to the weight
and miles travelled per gallon of specific cars in the mtcars data set). Furthermore, because
some of the interactions are driven by shiny [Wickham and Chang, 2016], we can add inputs
that look similar to shiny such as sliders and checkboxes to control and filter the plot. We
can also manually add tooltips as seen in Figure 2.5, which shows a basic ggvis plot of the iris
data set with tooltips.

8.0 Species
* ® setosa
® []] [] @ versicolor
® @ virginica
7.5
[]
L]
L] [L]
e
7.0+
o e
L4 L
L] [3N] L
6.5] L
£ [BN] [BN
4 L] e 00 L I
@ [] []
- [®
@ 6.0 L] e
& N
@ L N] L]
L] L L]
[]
5.5 L] []
e [] L]
[]
[BN] L]
e 00 [BN]
5.0 [] o @ 0 00
] e 0 []
L BN]]
[]
o9 [] []
4.5 L]
[I] []
L]
T T T T T T T T T T T T 1

2.0 22 2.4 2.6 28 3.0 3.2 34 3.6 3.8 4.0 4.2 4.4
Sepal.Width

Figure 2.5: A basic ggvis plot with tooltips

ggvis(iris, ~Sepal.Width, ~Sepal.Length, fill = ~Species) %>
layer_points() %>%

2.2. GGVIS 10

add_tooltip(function(iris) paste("Sepal Width: ", iris$Sepal.Width, "\n",
"Sepal Length: ", iris$Sepal.Length))

gear

. ¢ U

3.0 5.0
32

30
28
26

24 -

mpg

22

20+

4

Figure 2.6: Change a trend line with a slider and filters using ggvis alone

ggvis(mtcars, ~wt, ~mpg, fill = ~gear) %>’
layer_points() %>%

layer_smooths(stroke := "red",
span = input_slider(0.5, 1,
value = 1,
label = "Span of loess smoother")) %>%
layer_model_predictions(stroke := "blue",
model = input_select(c("Loess" = "loess",
"Linear Model" = "Im",
"RLM" = "MASS::rlm"),

label = "Select a model"))

However, while we are able to achieve indirect interactions, we are limited to basic interactivity
as we are not able to link layers of plot objects together. The user also does not have finer
control over where these inputs such as filters and sliders can be placed on the page. We also
cannot save these interactions to a standalone web page as ggvis plots are driven by the shiny
framework which requires R. There is an option of saving the plot as a static plot, either in
SVG or PNG format. To date, the ggvis package is still under development with more features
to come in the near future. With ggvis, we can go further by adding basic user interface
options such as filters and sliders to control parts of the plot, however this is only to a certain

2.3. SHINY 11

extent.

We cannot combine different views of data using ggvis, plotly and other htmlwidgets alone.
Interactivity can be extended with these packages by coupling it with shiny.

2.3 shiny

shiny [Chang et al., 2017] is an R package that builds web applications. It provides a connection
using R as a server and the browser as a client, such that R outputs are rendered on a web
page. This allows users to be able to code in R without the need of learning the other main
web technologies. A shiny application [RStudio, 2017a] can be viewed as links between inputs
(what is being sent to R whenever the end user interacts with different parts of the page) and
outputs (what the end user sees on the page and updates whenever an input changes).

To show how this works, we have created a simple shiny application that has a slider that
controls the smoothness of the trend line. Whenever the user moves the slider, the plot will be
redrawn and updated with a new smoother. Figure 2.7 is a diagram showing of how inputs
work with outputs in the shiny application in Figure 2.8.

Step 1:
user interacts with slider (input), slider
value returned to R

A

Step 2: R shiny Browser
use value of slider to
reproduce a plot
(renderPlot) Step 3: send new, redrawn

plot (output) to browser

A 4

Figure 2.7: A diagram showing how an input affects an output (slider to plot)

2.3. SHINY 12

Speed to stopping distance

120 o

100

80

8
c
% 60 —|
a
40 —
20
0 4
T T T T T
5 10 15 20 25
Speed
Span:
025 !

Figure 2.8: A simplistic shiny application that has a slider to control the smoothness of the
trend line

These applications can become more complex when more inputs and outputs are added. The
main advantage of using shiny is that it establishes a connection to R to allow for statistical
computing to occur, while leaving the browser to drive on-plot and off-plot interactions
(briefly defined in Section 1.1). This allows us to be able to link different views of data easily.
Furthermore, RStudio [2017¢] has provided ways to be able to host and share these shiny apps
via a shiny server. However, we are still limited in the sense that for every time we launch
a shiny application, we do not have access to R as it runs that session. Additionally, shiny
has a tendency to redraw entire objects whenever an ‘input’ changes as seen in Figure 2.8.
This can lead to unnecessary computations and traffic between R and the webpage slows down
the experience for the user. Despite this, it remains a popular tool for creating interactive
visualisations.

There are many different ways to use shiny to create more interactive data visualisations - we

can simply just use it to create interactive plots or we can go further and use it to extend the
interactivity in plotly, ggvis and other R packages.

2.3.1 Interactivity with shiny

shiny alone can provide some interactivity to plots [RStudio, 2017b]. Figure 2.9 shows linked
brushing between facetted plots and a table of the nzincome data set. With shiny, we are able

2.3. SHINY 13

to easily link plots together with other objects. This is done simply by attaching a plot_brush
input, and using the brushedPoints() function to return what has been selected to R. As
we select parts of the plot, we see this change occur as the other plot and the table updates
and renders what has been selected. Other basic interactions include the addition of clicks
(plot_click) and hovers (plot_hover).

Europ Maori MaoriCombin NonMaoriComb Other Pacific
10000 -

7500 -

g * sex
5000 - ¢ Female

* Male

weekly_income

2500~ < -. — . :.'sc .
. . 1 2/ AP
®e® . £ . * o
0- B d
l‘) 5‘0 1(.10 1%0 (3 S‘U 1(‘)0 150 LIJ 5I0 160 150 é 5‘0 160 1%0 (3 5‘0 1(‘)0 1&0 LI) 5‘0 1(30 TéU
weekly_hrs
You've hovering on: 54.8, 7801.23
age_midpt age_cat sex ethnicity highest_qualification = weekly_hrs weekly_income
62.50 60-64 Male MaoriCombin ~ BachDeg+ 46 2600
62.50 60-64 Male MaoriCombin School 80 2350
3250 30-34 Male MaoriCombin BachDeg+ 40 2670

Figure 2.9: Facetted ggplot with linked brushing and hovers

However, these basic interactive tools only work on base R plots or plots rendered with ggplot2
and best with scatter plots. It is possible to extend this to bar plots, but it requires more
thought. This is because the pixel co-ordinates of the plot are correctly mapped to the data
[RStudio, 2017d]. When we try this on a lattice plot as seen below in Figure 2.10, this mapping
condition fails as the co-ordinates system differs between the data and the plot itself. It is
possible to create your own mappings to a plot or image, however it is complex to develop.

2.3. SHINY 14

Lattice scatterplot of nzincome

8000 -

6000 -

Weekly income

2000 -|

o 50 100 150
Weekly hrs

Weekly_hrs=0.320298013245033
Weekly_income=0.4757

Figure 2.10: A lattice plot that fails to produce correct mapping

Because the plots are displayed as a single image, we can only view these plots as a single
object and cannot pull apart elements on the plot. We are unable to further extend and add
onto a plot, such as add a trend line when brushing or change colours of points when clicked
on. Despite being limited to plot interactions such as clicks, brushes and hovers, we can use
shiny to link multiple views of the data set.

2.3.2 Linking plotly or ggvis with shiny

Although shiny is great at facilitating interactions from outside of a plot, it is limited in
facilitating interactions within a plot. It does not have all the capabilities that plotly and ggvis
provides. When we combine the two together, more interaction can be achieved with less
effort.

2.3. SHINY 15

weekly_income

0 50 100 150 20 40 60 40

weekly_hrs weekly_hrs weekly_hrs
curveNumber pointNumber x y
132 47 5230
224 86 5430
390 60 9070
410 55 7800
878 60 7010
8510
298 60 5290
1051 60 5150
64 50 7710
724 37 5200
1714 37 5360

A 2 &2 B ®w ©w O © O © © ©
@
8
<Q
@
3

2776 37 5920

Figure 2.11: A shiny application with a plotly plot with linked brushing

plotly (along with many other R packages that generate htmlwidgets) and ggvis have their
own way of incorporating plots into a shiny application. In Figure 2.11, we can easily embed
plots into shiny using the plotlyOutput () function. The plotly package also has its own
way of co-ordinating linked brushing and in-plot interactions to other shiny outputs under a
function called event_data() [Sievert, 2017b]. By combining it with shiny, we are able to link
different plots together and to the data itself that is displayed as a table below. These in-plot
interactions are very similar to what shiny provides for graphics plots and ggplot2. They work
well on scatter plots, but not on other kinds of plots that plotly can provide. These can help
generate or change different outputs on the page, but not within themselves. By combining
the two together, we get on-plot functionalities from the htmlwidget, with off-plot driven
interactions from shiny. Similarly, we can combine ggvis and shiny together to get similar results
as seen in Figure 2.12. ggvis has its own functions (ggvisOutput() and linked_brush())
that allow for similar interactions to be achieved [Wickham and Chang, 2016].

2.4. ANIMINT 16

2.6 7 S .
° oo pecies
24 PY PY ® setosa
o000 00 O Y @ versicolor
2.2 L N J [) ® virginica
CCCo O []
2.0 [eoee) { Be
o0 o []
1.8+ o0 o o 00 o
[J
1.6 o0 °
£ co
] .
;. 14 L J
5 1.2
1.0 >0 00
0.8
0.6 o
[J
0.4 o 000 ©
00 ©
02— © 000000 O
o o
0'0_ T T T T T T T T T T T T 1

10 15 20 25 30 35 40 45 50 55 60 65 70
Petal.Length

Sepal.Length Sepal.Width Petal.Length Petal.Width Species id

5.00 2.00 3.50 1.00 versicolor 61
6.00 2.20 4.00 1.00 versicolor 63
5.80 2.70 4.10 1.00 versicolor 68
5.70 2.60 3.50 1.00 versicolor 80
5.50 2.40 3.70 1.00 versicolor 82

Figure 2.12: An example of linked brushing between ggvis plots

However, we are still left with a general problem of shiny (with the exception of ggvis)
recomputing and redrawing a plot or widget every time an input changes. As of writing, work
has been developed to prevent plots generated by plotly to only change certain parts of a
plot whenever a plot is implemented with shiny. In a recent version of plotly (version 4.7.1),
Sievert[2017b] has shown that this is possible with a new feature called plotlyProxy(), but
requires knowledge of the plotly.js library and how these proxy objects work.

2.4 animint

animint [Hocking et al., 2017] is an R package designed to allow users to create interactive
and animated visuals using ggplot2. It uses the concept of direct manipulation defined in
Scheiderman (1982). It focuses on adding two main aesthetics to ggplot2 - clickSelects to
allow the user to click on a selection, and showSelects that shows the current selection. The
user is able to directly click on the plot, which can be used to link multiple views of data on

2.4. ANIMINT 17

the same page. It uses D3 to generate the interactive plot on the page, and stores all the data
in multiple TSV files that can be viewed locally.

To illustrate, we create a simple example linking between gender and highest qualification to
identify if there is a difference in income from the nzincome data set (Figure 2.13). When we
click on the bars of the plot (left), we can subset the data by gender, while we can further

subset the groups into qualification by selecting the legend on the scatter plot on the right.

Overall, across all qualification groups, there appears to be a difference between income levels
by gender.

10000 5

7500
4000

highest_qualification

come

E| £ 5000 BachDeg+
3 >
?g * NoQual
2000 * OthPostSec
. chool
2500 4 [} S 00_
oo . Vocational
v oo daf et
DRLRCL 1A
g B0 33 ¢
BRI o0 o'
o R
T T 1 T T T T
Female Male 0 50 100 150
sex weekly_hrs

Show download status table Show animation controls Show selection menus

Figure 2.13: An animint example linking a bar plot by gender to weekly hours and income
from the nzincome data set

library(animint)

plotl <- ggplot(income) + aes(x = sex, clickSelects = sex) + geom_bar()

plot2 <- ggplot(income) + aes(x = weekly_hrs, y = weekly_income, showSelected
color = highest_qualification) + geom_point ()

plotAll <- (list(pl = plotl, p2 = plot2))
structure(plotAll, class = "animint")

If we click on any of the bars on the bar plot (left), the scatter plot (right) shows the selected
points that correspond that that group.

Hocking’s [2017] example of the displaying different views of the World Bank dataset shows

how complex interactive and animated plots can be achieved with less than 100 lines of code.

It is simple and straightforward, and is not restricted to linking scatter plots as discussed
with crosstalk and plotly. Because plots are rendered entirely in JavaScript using D3, they are
relatively more responsive and faster than compared to using a client-server framework like
shiny which has an overhead cost from communicating between a remote server with R and
the browser.

sex,

2.5. SUMMARY 18

The key strength of animint is also its weakness as the only type of interactivity that can be
achieved is clicking and showing what has been selected [Hocking et al., 2017]. Currently, it
cannot achieve brushing or zooming and is only compatible with ggplot2. For more advanced
users of ggplot2, not all geoms are supported, and may remain static when rendered with
animint. Furthermore, because everything is computed and rendered beforehand, this means
that if a selection requires a re-computation in R before it can be displayed, this is not possible.
Hocking [2017] suggests that a solution to this is to use animint with shiny, but this means
that a new animint plot is rendered every time the user interacts with it. The unfortunate
situation with creating stand-alone interactive plots this way is that the amount of data that
needs to be generated to power the plots increases as we increase the number of subsets. If
a data set has multiple subsets that need to be rendered, animint will need to make all the
different combinations for each subset to link every plot together. The bigger the number of
subsets and the larger the dataset, the number of files that need to be generated to drive the
interactive or animated plot increases. In this case, using a client-server framework like shiny
would be more suitable.

The animint package is promising for implementing a complex system that achieves interactive

and animated plots that can be easily linked and implemented by users using clicks and
selection, but there is still a great deal that it cannot do.

2.5 Summary

From assessing all these tools, we can summarise the features and drawbacks for each tool in
the table below.

Type of Compatible with Types of Redraws entire Framework
Tool plot shiny interactions plot type
plotly plotly(plotly.js), Yes Clicks, brushing, Yes (unless standalone

ggplot2 subsetting, proxy) HTML

filters, zooming,
rescales, linking
multiple views
with crosstalk
(focuses more on
on-plot
interactions)

2.5. SUMMARY 19

Type of Compatible with Types of Redraws entire Framework
Tool plot shiny interactions plot type
ggvis ggvis(Vega) Yes off-plot No client-
interactions, server

hovers, brushing
(with crosstalk),
filters, rescales

(focuses more on

off-plot
interactions)
shiny R plots, - clicks, brushing, Yes client-
anything filters, server
compati- subsetting,
ble with hovers, able to
it link views (both

on-plot and
off-plot possible)
animint ggplot2 Yes clicks + selects No (unless used standalone
(D3) with shiny) HTML

Table 1: A summary table of all the tools available and their main capabilities
Note: anything that is compatible with shiny will end up adopting its client-server framework.

Most of these tools can be extended using shiny. However the general problem is that when
these systems are implemented with shiny (with the exception of ggvis), every time a user
interacts with an input, the whole plot or corresponding widgets will be recomputed and
redrawn. Furthermore, many of these do now allow us to customise our own interactions
into the plot. We can use these tools for easily visualise our data with standard interactive
plots, but if the user wishes to customise interactivity or extend it further, it presents a dead
end or a need for learning its respective API. The other significant factor is that most these
tools use a JavaScript library to render their plots. While graphics plots generated in R are
supported by shiny and ggplot2 across plotly and animint, there is no support for graphics
generated with other plotting systems in R. Next, we will look at how we can achieve specific
on-plot interactions on static R plots by combining JavaScript with lower levels tools and avoid
reproducing entire plots whenever the user interacts with it.

Chapter 3

Interactive R plots using lower level
tools

Web interactive graphics can be achieved by R users without the knowledge of HTML, CSS
and JavaScript. However, many of these tools use an external JavaScript library to render their
plots. This section discusses how we can use two lower level packages, gridSVG[Murrell and
Potter, 2017] and DOM[Murrell, 2016a] to incorporate interactions into R plots and prevent
redrawing entire plots. One approach to avoid this is to target parts of the plot that need
to be updated. We need a system that renders SVG elements but has a mapping structure
that allows elements to be related back to data. In R, we can use the gridSVG package. By
combining gridSVG, shiny and JavaScript, we are able to update specific parts of the plot
when the user interacts with an input by passing JavaScript messages between R and the
browser. Because interactions are achieved by manipulating web content using the DOM, we
can alternatively use the DOM package that directly allows us to drive web content from R
without the need for writing JavaScript. We will discuss how these different approaches work.

3.1 gridSVG

gridSVG [Murrell and Potter, 2017] is an R package that allows for the conversion of grid
graphics in R into SVG. This is powerful because it is easy to attach interactions to specific
elements on the page. The advantage of using gridSVG over others is that there is a clear
mapping structure between elements in the data set and SVG elements generated. This is not
clear in plotly or ggvis and their JavaScript libraries, which makes it hard to identify or trace
data back to the elements on the page. This also explains why it may be difficult to customise
interactions on the plot. With gridSVG, we can add JavaScript to grid elements in R using
grid.script() and grid.garnish() [Murrell and Potter, 2014].

20

3.1. GRIDSVG 21

grid.circle(x = 0.5, y = 0.5, r = 0.25, name = '"circle.A",
gp = gpar(fill = "yellow"))

grid.garnish('circle.A', onmouseover = "allred()",
onmouseout = "allyellow()", "pointer-events" = "all")

grid.script("allred = function() {
var circle = document.getElementById('circle.A.1.1');
circle.setAttribute('fill', 'red');
")

grid.script("allyellow = function() {
var circle = document.getElementById('circle.A.1.1');
circle.setAttribute('fill', 'yellow');
12D

grid.export("circle.svg")

Figure 3.1: An interactive circle made using gridSVG - when the user hovers over the circle,
it will turn red (shown on the right)

In Figure 3.1, the circle has been drawn in R, named and have interactive elements added
before being exported out as an SVG. A simple interaction has been attached to the circle
where if the user hovers over the circle, it will turn red.

This shows that there is a relationship between grid objects and SVG objects that are generated.
In grid, we have named the circle as circle.A. gridSVG maintains this as an grouped SVG
element with an id attribute of circle.A.1, where inside lies a single SVG circle element
called circle.A.1.1. In R, we can refer back to these grid objects to attach interactions to

3.1. GRIDSVG 22

their SVG counterparts.

Another important feature gridSVG has is the ability to translate between data and SVG coor-
dinates[Murrell and Potter, 2012]. Suppose that a plot has been generated. The exportCoords
argument in grid.export is able to generate data that retains the locations of viewports and
scales from the original plot in R (Murrell and Potter, 2012). We can use this information to
convert data to SVG coordinates and vice versa.

To demonstrate, we have drawn a plot using the cars data set (Figure 3.2) and exported its
coordinate system with its corresponding SVG. We have separated the svg and the coordinates.

xyplot(dist ~ speed, data = cars)

120 o L
100 — -
]
o) o
80 o -
o
o
o
B o °
2 60 — o I~
© o o)
o 3 o
o ¢)
40 oo ©° -
© o © o o ° 5
0 %8 o0o0o0
20 © 0 o ©) -
o ° 5
o o
04 © © -
T T T T T
5 10 15 20 25
speed

Figure 3.2: A lattice plot of the relationship between speed and stopping distance of cars that
is further exported as an SVG using gridSVG

svgdoc <- grid.export(NULL, exportCoords = "inline")

separate the svg and coordinates
svg <- svgdoc$svg
coords <- svgdoc$coords

To be able to use the coordinate system in R to convert between data and SVG coordinate
systems, we need to load it in by calling gridSVGCoords.

3.1. GRIDSVG 23

gridSVGCoords (coords)

Suppose we have a new point at (4, 5). To be able to convert this in the correct coordinate
space, we need to find the correct viewport (identified as panel) it lies in. This can then be
easily translated into SVG co-ordinates and back using the functions viewportConvertX and
viewportConvertY with panel.

to identify the correct panel
panel <- "plot_01l.toplevel.vp::plot_Ol.panel.1.1.vp.2"

1f there's a new point we want to find the SVG coordinates of
(x <- viewportConvertX(panel, 4, "native"))

[1] 77.92132

(y <- viewportConvertY(panel, 5, "native"))

[1] 70.74

The native co-ordinates (4, 5) have been translated as (77.92, 70.74) in the SVG co-ordinate
system. This can be further added on to the web page without redrawing the rest of the plot
as we have the co-ordinates in the SVG space using JavaScript. We can also translated the
coordinates back into data to return (4, 5).

to translate back to data (native):
viewportConvertX(panel, x, "svg", "native")

[1] 4

viewportConvertY(panel, y, "svg", "native")

[1]1 b

The main limitations of this package are clear by its name. Only plots that are defined by
the grid graphics system can be converted into SVG. This means that plots defined using
base R cannot be directly converted [Murrell and Potter, 2014]. There is a solution to this
using the gridGraphics [Murrell, 2015] package that can converts base R graphics into grid
graphics (further demonstrated in Section 4.2.1). Another point to note is that the process of
converting elements to SVG becomes slow when there are many elements to render although
work is under way on this to speed up conversion.

3.1. GRIDSVG 24

3.1.1 Customising simple plot interactions

A clear limitation that is present in the existing tools discussed previously is letting the user
add their own interactions on an existing plot.

weekly_hrs
sex
Female
Male
L
L]
L]
.
. .
- e LA
aee a0 LA
aa® 8 aae
I I I I
20 40 60 80
weekly_hrs

Figure 3.3: An example of a customised box plot interaction on an iNZight plot using gridSVG,
JavaScript

One such example is highlighting part of a box plot to show certain values between the median
and the lower quartile (Figure 3.3). When the user clicks on this box, it will highlight the points
that lie within this range. While this can be achieved with gridSVG and custom JavaScript, it
is not as straightforward with plotly or ggvis. Despite plotly and ggvis also rendering graphs
in SVG, it is more difficult to identify which elements to target and add interactions to with
these systems.

3.1. GRIDSVG 25

3.1.2 Preventing redraws in shiny using JavaScript messages and gridSVG

As mentioned at the end of Chapter 2, one of the downsides of using shiny along with plotly or
other htmlwidgets is its nature to redraw plots every time an input changes. With R plots
that are rendered using the renderPlot function, redrawing is required because the plot is
viewed as a raster image. In other cases, shiny simply re-runs code when a user interacts with
an input, which causes the plot to be redrawn. This means that we cannot specifically target
elements on the page as the plot is viewed as a single object.

A new approach is to render the plot in SVG and target certain elements that need to be
redrawn while using shiny to communicate back to R. If we use SVG, we can separate out
which components to target and add interactions without changing the rest of the plot. A
complication to this is that we can no longer use the usual shiny input and output functions
that link everything on the page. shiny also does not have specific functions to control
SVG content. A different way to do this is to pass data between the browser and back
to R using JavaScript to change certain elements on the web page. shiny provides a set
of functions that allow for messages to be sent through this channel using two JavaScript
functions: shiny.onInputChange() and shiny.addCustomMessageHandler() [Heckmann,
2013]. To send data from the browser back to R, we use shiny.onInputChange (). This allows
JavaScript objects to be sent back to the shiny server in a way which can be recognised in R.
To send data from R back to the browser, we use shiny.addCustomMessageHandler ().

To demonstrate how this is useful in updating certain parts of a plot, we provide an example
by altering a smoothing curve using gridSVG and these JavaScript functions. First, we use
gridSVG to generate our plot and identify the element corresponding to the trend line. We
also need to export the coordinates in order to be able to transform data into the correct SVG
coordinates when we update the co-ordinates of trend line.

user instructs
send inputs:
value selected on slider or
point index
(shiny.onlnputChange())

use inputs to recompute

coordinates of trend line R shiny Browser
(observe() +
ion$:)) update information " updgte the
send new coordinates of
coordinates the trend line
of the trend line shiny.addCustomMessageHandler 0

Figure 3.4: Diagram of how things work using shiny’s JavaScript functions in Figure 3.4

In Figure 3.4, we can pass the degree of smoothing value from the slider back to R. R then
recalculates the x and y co-ordinates of the new smooth. Once these co-ordinates are calculated,
they are sent back to the browser using session$sendCustomMessage. These coordinates are
passed to shiny.addCustomMessageHandler () to run a JavaScript function that will update
the points of the line. This process is used in Figure 3.5 with a plot of the iris data set drawn
with the lattice package.

3.1. GRIDSVG 20

Select color | I 1

red v L

Select trendline

Loess v

Degree of smoothing 5

o5 () 1

Petal.Length
B
1

T T T T T T
0.0 0.5 1.0 15 20 25

Petal.Width

Figure 3.5: A replica of Figure 2.7, but only the trendline changes

This example (Figure 3.5) is extensible as we can render grid graphics (such as lattice) and
customise interactions while maintaining a connection between R and the browser using shiny.
By doing this rather than redrawing the entire plot, we have only changed the trend line. This
method does, however, require the knowledge of JavaScript and the limitations of how much
information can be sent through are unknown as it is not commonly used.

To stretch this example further, we added in a feature where the user can highlight over a set
of points by dragging the mouse (as seen in Figure 3.6). We return the information about
these highlighted points in order to further compute a smoother for just these points. To
achieve this in shiny, we have written some JavaScript that returns the indices of these selected
points back to R with shiny.onInputChange () to compute a suitable smoother which is then
displayed.

3.2. DOM PACKAGE 27

Select color | I I 1 1 1

red v o

Select trendline

4 °© S |
& o ° o
Loess v W
° o
H
Degree of smoothing 5 S o |
031 i

Petal.Length
IS
1

T
0.0 0.5 1.0 15 20 25
Petal.Width

Figure 3.6: Select over a set a points to show a smoother

3.2 DOM package

As highlighted in section 1, many interactions driven on the web are done by DOM (Document
Object Model) manipulation. In brief, the Document Object Model is a programming interface
that allows developers to manipulate content on a web page [W3C, 2009]. We can use it
to navigate and pinpoint specific elements on the page to modify and add interactions to.
Generally, this is accessed through by writing JavaScript functions.

Because most interactions are driven by JavaScript and involve modifying content on the
page, the DOM package [Murrell, 2016a] allows for us to directly do this from R. We can send
requests back and forth between R and the browser. This provides a basis for using the web
browser as an ‘interactive output device’ [Murrell, 2016b].

Using the DOM package allows us to write certain commands that are analogous to what is
written in JavaScript. This removes the burden of traversing between the two programming
languages. Rather than writing JavaScript, we can write DOM commands in R that produce
similar results. Going back to our circle example in Figure 3.1, we can change the colour of
the circle by directly sending this request to the web page.

circle <- getElementById(page, "circle.A.1.1", response = nodePtr())
setAttribute(page, circle, "fill", "red")

In contrast, the JavaScript code for changing the circle to red:

3.2. DOM PACKAGE 28

var circle = document. ('circle.A.1.1");
circle. (£fil11, "red");

The DOM package is also special in which we are able to do asynchronous programming (async
= TRUE) [Murrell, 2016b]. Asynchronous programming is a concept where we are able to start
an initial task and run different tasks at the same time. Here, the DOM package is able to
run a task from R to the browser but also be able to run commands in R while the call to the
browser is still running. This is important as it makes our web applications more efficient than
trying to run each command or task one at a time. When we need to call back to R from the
browser, these are all asynchronous events that can easily react to user interactions, making it
more responsive and creates a smoother experience for the user.

DOM allows R to be called from the browser and for requests from R to be sent to the browser.
To demonstrate this, we will replicate the hover effects on the circle as shown in Figure 3.1.
Figure 3.7 shows how this can be set up using DOM. We can use setAttribute to set the
colour of the circle, and use the RDOM.Rcall function to send requests from the browser back
to R. When the user hovers over the circle, the browser will send a request back to R to run
the turnRed function, which in turn sends a request back to the browser to change the colour
of the circle to red. Once the user hovers out, the browser will send a request back to R to
turn it back to yellow. Our result is shown in Figure 3.8.

Step 1: user hovers over/out of circle,
browser sends request back to R
(RDOM.Rcall())

A

R DOM Browser

Y

Step 2: change the color of the circle to
red/yellow
(setAttribute(.., async = TRUE))

Figure 3.7: Simple diagram showing how DOM works with from replicating Figure 3.1

3.2. DOM PACKAGE 29

Figure 3.8: DOM example of Figure 3.1 - when hovered, the circle turns red (right)

draw circle in grid
grid::grid.circle(x = 0.5, y = 0.5, r = 0.25,
name = "circle.A", gp = gpar(fill = "yellow"))
export SVG
svg <- gridSVG: :grid.export (NULL) $svg
dev.off ()

set up new page and add circle:

library(DOM)

page <- htmlPage()

appendChild(page,
child = svgNode(XML: :saveXML(svg)),
ns = TRUE,

response = svgNode())
circle <- getElementById(page, "circle.A.1.1", response = nodePtr())

hover effects:
turnRed <- function(ptr) {
setAttribute(page,
circle,
"fill",
"red",
async = TRUE)

turnYellow <- function(ptr) {
setAttribute (page,
circle,
"fi11",

3.2. DOM PACKAGE 30

"yellow",
async = TRUE)

setAttribute(page,
circle,
"onmouseover",
"RDOM.Rcall('turnRed', this, ['ptr'l, null)")

setAttribute(page,
circle,
"onmouseout",
"RDOM.Rcall('turnYellow', this, ['ptr'], null)")

The example (Figure 3.8) takes approximately 40 lines of code for a hover effect. It involves
lower level programming and requires the user to know how the Document Object Model and
main web technologies work together. A different approach would be to write some JavaScript
and send it across to the browser from R. Since we are only just changing the colour of the
circle, it is more efficient to write JavaScript and send it to the browser rather than telling
the browser to call back to R. It is better to call back to R when a statistical computation is
necessary (such as recomputing a trend line’s co-ordinates in Figure 3.5).

3.2.1 Comparing DOM to shiny

DOM is similar to shiny as it establishes a connection between Rand the browser. To compare,
we have replicated Figure 3.5 using DOM.

Step 1:
once user moves slider, call back to R
<
Step 4: R Step 2: query for the value of the slider——>| gqwser
use value of slider to €«——Step 3: return value of slider
recompute coordinates - >
of trend line Step 5: update points

of the trend line

DOM

Figure 3.9: Steps on how a trend line can be altered using the DOM package

The process of creating this example is similar to what was done with shiny. However, it is
more difficult to set up as it requires the user to manually link all the components on the page.
First, we draw the plot and save it as an SVG in memory. Next, we can add the SVG plot
and a slider to the page. We identify which element corresponds to the trend line, and define
what happens when the slider moves or when text is clicked. This requires an additional query
to the browser to return the value of the slider before it can be returned back to R, as shown

3.2. DOM PACKAGE 31

in Figure 3.9. These are co-ordinated using asynchronous callbacks, where once a response is
returned, we can schedule another task behind it. These can be viewed as a series of steps that
are linked together. Once the value of the slider is returned, we can use it to recalculate the
coordinates of the trend line before updating it on the page. Our final result is put together in
Figure 3.10.

7 N -
. .
L]
.
L]
. . .
6 - . . . ® =
. . .
Py ® .
° . (3 .
. L3
. °
1
. H
) R LY
5 . . * -
H ° H
° .
. o e
$ 2% 0 e
g 44 HE & 1 L
= oo °
I o/ .
& .
.
3 4 (] -
27 . . B
e o o _ 4
1] L .
e 8 o0
v e
)
o ®
1 . -
T T T T T T
0.0 0.5 1.0 15 2.0 25
Petal.Width
Linear
Loess
0.5

Figure 3.10: DOM example of Figure 3.5 for changing a trend line using a slider

DOM allows for more flexibility as we have control over the entire page. From a developer’s
perspective, we can continue to modify elements on the page. Users have access to R while the
the connection to the web page is running. We can also run a number of interactive web pages
in a single R session. In shiny, we are unable to use R in a single session or be able to change
it without stopping the application. Furthermore, a shiny application can only do one task at
a time, and cannot run tasks asynchronously. However, this may be resolved by the promises
package [Cheng, 2017a] in the near future, which allows for asynchronous programming within
R and thus, more responsive shiny applications [Cheng, 2017b]. A caveat of using the DOM
package is that requires a lot more code to link everything together. In shiny, these links
between inputs and outputs are much easier to co-ordinate.

3.2. DOM PACKAGE 32

Internally, there are many limitations with this package. As this package is still developmental,
only part of the DOM (Document Object Model) API has been expanded, and the connection
between R and the browser requires extra attention [Murrell, 2016b]. In some cases, it is still
not possible to achieve certain interactions without JavaScript, such as capturing where the
mouse’s position is on screen. Murrell [2016b] states that it can only be run locally and is
currently aimed at a single user rather than multiple users.

gridSVG, DOM and shiny provide ways in which we can bind custom JavaScript to elements,
but requires the user to be able to define what kind of interactions they wish to achieve.

There is a clear trade off between existing tools. It is possible to customise interactions on
existing plots, but this requires a knowledge of JavaScript in order to do so. Comparatively,
tools that provide standard web interactive plots are easier to use but are complex to modify
and extend further. In the next section, we discuss how we can simplify the implementation of
certain interactions on plots originally rendered in R and build a solution using these tools.

Chapter 4

Designing a more flexible way of
producing simple interactions

By using gridSVG, DOM and JavaScript, we can customise interactions onto plots. However,
these are too specific and assume a lot of knowledge from the user. We need a way to provide
interactions that can be easily customised and defined by the user with a much less steeper
learning curve. This discusses a potential solution using grid, gridSVG and DOM to drive web
interactive graphics.

4.1 The main idea using grid, gridSVG and DOM

In each of the previous examples, they is a certain pattern. In order to define a single
interaction, it requires the need to know which SVG element to target, what type of interaction
or event is to be attached to that element, and how to define what happens when an interaction
occurs. This idea can be broken down into 5 simple steps:

e Draw the plot or elements in R

o Identify elements to interact with

e Determine what kind of interaction is to be achieved

e Attach and link interactions and events to targeted elements
e Send interaction instructions and plot to the browser

33

4.2. EXAMPLES 34

Use DOM to attach interactions
and send things to and from the

browser
2. Identify which 4. Attach 5. Send interactions
elements to interact 3. Define interactions L . and plot to web browser
1. Draw the plot . interactions)
with and processes to certain events (addinteractions
(listElements()) /draw())
R plots are drawn in grid or Use gridSVG to convert what
converted into grid is drawn into an SVG

and convert between data
and co-ordinates

Figure 4.1: grid, gridSVG and DOM in the process

The process above (Figure 4.1) can be implemented using grid, gridSVG and DOM. We can use
the relationship between grid and gridSVG elements explained in Section 3.1 to allow users to
define and identify which elements to target. We can use DOM to attach interactions to certain
elements and send these across to a web page. The reason for using DOM rather than shiny
is that there are more complexities that work under the shiny framework including reactive
programming, which is particularly difficult to grasp in detail. Because it is so low level, we
can use DOM to create different types of interactions, but it is unreasonable for the majority of
users as it requires some understanding of web technologies and takes too much effort. As seen
in Figure 3.8, it takes roughly 40 lines of code to achieve a simple hover effect (with or without
writing JavaScript), and about 200 lines of code to link a slider to a smoother (Figure 3.10).

We need a system that is more convenient for users, not too strenuous to code up, does not
require too many pre-requisites, but is flexible enough to achieve different interactions. We
have created the interactr package that attempts to prototype this idea. It acts as a convenience
wrapper for defining interactions with DOM, gridSVG and grid. It aims to allow users to define
their own interactions to plots in R without the need for a full understanding of the web
technologies involved.

We have recreated some examples using interactr to demonstrate this idea. Many of the
examples discussed below use functions that are found in this package.

4.2 Examples

4.2.1 Linking box plots

The goal for this example is to link the interquartile range of the box plot to a scatter plot,
followed by a density plot. When the user clicks on the box plot, it highlights the range of the
box plot on the other respective plots.

4.2. EXAMPLES 35

We note that everything that will be done is coded in R so it requires no knowledge JavaScript
or other web technologies from the user.

Our first step is to draw the box plot in R.

library(interactr)
library(lattice)
bw <- bwplot(iris$Sepal.Length, main = "Sepal length", xlab = "Sepal length")

Here, we have stored the box plot into a variable called bw. To attach interactions, we need to
identify what elements have been drawn. We can do that by listing the elements.

listElements (bw)

Sepal length

T T T T
5 6 7 8

Sepal length

Figure 4.2: Producing a box plot in R

plot_01.background

plot_Ol.main

plot_01.xlab
plot_Ol.ticks.top.panel.1.1
plot_O1l.ticklabels.left.panel.1.1
plot_O1l.ticks.bottom.panel.1.1
plot_O1l.ticklabels.bottom.panel.1.1
plot_O1l.bwplot.box.polygon.panel.1.1
plot_O1.bwplot.whisker.segments.panel.1l.1
plot_O1l.bwplot.cap.segments.panel.1.1
plot_O1l.bwplot.dot.points.panel.1.1
plot_Ol.border.panel.1.1

4.2. EXAMPLES 36

box <- "plot_O1.bwplot.box.polygon.panel.1.1"

This will print the plot (Figure 4.2) and return a list of all the elements that make up the box
plot in R. The user can identify which element to target to attach interactions. This is one
of the disadvantages (further discussed in Section 5.2) of this process - the user must deduce
which element to target through the names listed. In some cases, this is straightforward like in
the example above, we suggest that the ‘box’ should refer to the box plot. We have identified
the box that marks the interquartile range.

Next, we can define a simple interaction. We want to achieve an interaction where when the
user hovers over the box, it will turn red. In the case of a hover, we have defined it as a type
of interaction to which we can specify the ‘attributes’ and styles of the box.

interactions <- list(hover = styleHover(attrs = 1list(fill = "red",
fill.opacity = "1")))

Note that the interaction has only been defined but not linked to the targeted element (which
is the box) yet.

draw(bw, box, interactions, new.page = TRUE)

This line of code (the draw function) both links the interaction we defined before to the box
element and sends the plot across to a new web page. We see that when the user hovers over
the box, the box turns red as seen in Figure 4.3.

Sepal length Sepal length

T T T T T T T T
5 6 7 8 5 6 7 8
Sepal length Sepal length

Figure 4.3: Boxplot (left) that turns red when hovered (right)

Before we move on to drawing the scatter plot, we need to make sure we identify the interquartile
range of the box plot and extract any other information we may require from the plot before
moving onto the next. This is one of the disadvantages of using this package which is further

4.2. EXAMPLES 37

discussed in Section 5.2 when plots are separately drawn to the graphics device each time.

Here, we can return the range of the box plot and store it in a variable called range.

range <- returnRange (box)

We now proceed to add a scatter plot by drawing the scatter plot, listing the elements and
identifying the points before sending it to the same web page.

sp <- xyplot(Sepal.Width ~ Sepal.Length,

data = iris,

main = "Sepal Width ~ Sepal Length")
listElements(sp)
points <- "plot_O01l.xyplot.points.panel.1.1"
draw(sp) #by default, new.page = FALSE

We see that the box plot and the scatter plot we drew in R are now on the same web page
(Figure 4.4).

Sepal length Sepal Width ~ Sepal Length

.
Sepal.Width

25 o o 000 ° o L

T T T T T
5 6 7 8 5 6 7 8
Sepal length Sepal Length

Figure 4.4: Boxplot and scatter plot on the same web page

To highlight the points in the scatterplot that lie in the range of the box, the user can define
the function as follows. We will determine the indices of the points that lie within the range
of the box, and then pass that index through a function called setPoints to highlight these
in red and group them together in a class called selected.

highlightPoints <- function(ptr) {
#identify indices of selected points
index <- which(min(range) <= iris$Sepal.Length
& iris$Sepal.Length <= max(range))
set tdentified points to red

4.2. EXAMPLES 38

setPoints(points,
type = "index",
value = index,
attrs = list(fill = "red",
fill.opacity = "1",
class = "selected"))

This function can be easily modified by the user and requires them to make the connection
between the data they are dealing with (in this case, the iris data). As we have defined this
interaction, we now need to define the event that will invoke this interaction before we can
send it to the browser.

boxClick <- list(onclick = 'highlightPoints"')
addInteractions(box, boxClick)

We have inserted the function name to run when a ‘click’ is performed (line 1). Next in the
second line of code, we have appended this interaction to the box element, so that when we

click on the box, the points in the scatterplot that lie within that range should light up in red.
This is shown in Figure 4.5.

Sepal length Sepal Width ~ Sepal Length

45

40 -

35 -

Sepal Width

304 ©
oooooo

25

20 -

T T T T T T
5 6 7 8 5 6 7 8
Sepal length Sepal Length

Figure 4.5: Click on box plot to light up points on scatter plot

This example can be further extended by linking the box plot to both a scatter plot and
density plot. Here, we have taken the first 500 observations from a survey conducted with
school children in 2009 [CensusAtSchool, 2009] and wish to find out the density of girls who
have the heights that lie within that interquartile range of the boys heights.

First, we draw a box plot of boys’ heights and attach a hover effect to the box, similar to what

4.2. EXAMPLES 39

was done previously. The range of the box is identified for further use.

bw <- bwplot(boys$height, main = "Boxplot of boys' heights",
xlab = "Boys' heights (cm)")

bw.elements <- listElements(bw, "boys_height")

box <- "boys_height.bwplot.box.polygon.panel.1.1"

interactions <- list(hover = styleHover(attrs = list(fill = "red",
fill.opacity = "0.5",
pointer.events = "all")))

draw(bw, box, interactions, new.page = TRUE)
range <- returnRange (box)

Next, we add the scatter plot between boys’ heights and arm span to the page.

sp <- xyplot(boys$armspan ~ boys$height,
main = "Height vs armspan (boys)",
xlab = "Height(cm)",
ylab = "Armspan")
sp.elements <- listElements(sp, "sp_bheight")
points <- "sp_bheight.xyplot.points.panel.1.1"
draw(sp)

The next line of code adds the density plot of girls’ heights. Note that no interactions have
been defined yet.

dplot <- densityplot(~girls$height,
main="Density plot of girl's heights",
xlab="Height (cm)")
d.elements <- listElements(dplot, "girls_height")
dlist <- list(points = "girls_height.density.points.panel.1.1",
lines = "girls_height.density.lines.panel.1.1")
draw(dplot)

Boxplot of boys' heights Height vs armspan (boys) Density plot of girl's heights

pan

om | T RS 5 o

160 150 20 @ 0 2 0 0 180 a0 0 2 140

P 80 o0 20
Heighticm)

o .
Boys' heghts (em) Hoighlem)

Figure 4.6: All three plots on the same web page

4.2. EXAMPLES 40

Figure 4.6 shows all three plots on the same web page.

In order to highlight a certain region of the density plot, we need to add a new element to
the page. This can be done using the addPolygon function. Ideally, it should be added to the
same group as where the density lines are located. We can use the findPanel function to
identify the correct viewport to attach to.

add invisible polygon to the page:
panel <- findPanel(dlist$lines)
addPolygon("highlightRegion", panel, class = "highlight",
attrs = list(fill = "red",
stroke = "red",
stroke.opacity = "1",
fill.opacity= "0.5"))

This polygon will remain invisible to the page as we have not defined the coordinates of the
region. We only want this to appear when the user has clicked on the box plot.

Next, we write a function that defines what happens after the box plot is clicked. We identify
which the coordinates of the density line lie within the range of the box plot. This can be
used to define the points of the region that we wish to highlight. We can also highlight the
points in the scatter plot in the same way as we have done in the previous example.

highlightRange <- function(ptr) {

coords <- returnRange(dlist$lines)

index <- which(min(range) <= coords$x & coords$x <= max(range))
xval <- coords$x[index]

yval <- coords$y[index]

add start and end points for drawing the region to be highlighted
xval <- c(xvall[1l], xval, xval[length(xval)])
yval <- c(0, yval, 0)

pt <- convertXY(xval, yval, panel)

#set points on added polygon
setPoints("highlightRegion", type = "coords", value = pt)

highlight points on scatter plot, remove missing values
index <- which(min(range) <= boys$height

& boys$height <= max(range)

& !'is.na(boys$armspan))

set points that will highlight according to indezx
setPoints(points,

4.2. EXAMPLES 41

type = "index",

index,

list(fill = "red",
fill.opacity = "0.5",
class = "selected"))

value
attrs

Finally, we define and attach our interactions to the page.

boxClick <- list(onclick = "highlightRange")
addInteractions(box, boxClick)

When the user now clicks on the box plot, it lights up the points and the density that lie
within that range as seen in Figure 4.7.

Boxplot of boys' heights Height vs armspan (boys) Density plot of girl's heights

w 10 120 o 10 180 20 o 10 120 o 180 o0 20 100 P " 100 o0 20
boyssheight Heighi(cm) Hoight(cm)

Figure 4.7: A single click on the box plot links the density and scatterplot together

4.2.2 Changing the degree of smoothing of a trend line

Another example that can be done with interactr is driving an interaction using a slider. The
slider controls the smoothing of the trend curve. We do not want to redraw the scatter plot
when the smoothing settings change.

Here, it becomes more complex as it requires information to be sent and queried back and
forth between R and the browser.

Once again, we begin by drawing a plot.

iris.plot <- xyplot(Petal.Length ~ Petal.Width,
data = iris,
pch = 19,
type = c("p", "smooth"),
col.line = "orange", lwd = 3)

4.2. EXAMPLES 42

#list elements and print plot
listElements(iris.plot)

#send plot to browser
draw(iris.plot, new.page = TRUE)

Next, we add a slider to the page. This has not been linked up to any elements yet (Figure 4.8).

#add slider to page:
addSlider("slider", min = 0.5, max = 1, step = 0.05)

7 4 . L
. .
.
.
.
. . °
6 - L . . . =
. . .
° [.
. ° e o .
. °
H °
1
(] 1
* 0 .4 o e e
5 - . [) ° =
H [H
. H
. e o 4
$ Ve
.‘g’ o s =
[.
8 4 e L
= s .
= .
g .
(]
3+ . =
2 - -
. o
e o0 o
4 B
I
® e o
L]
14 e L
T T T T T T
0.0 0.5 1.0 1.5 2.0 25
Petal Width

Figure 4.8: Plot with slider

The user can write a function with the argument value to define what happens when the
slider moves. This passes the value of the slider from the web page back to R. Here, we want
to use the value to control the span of the trend line. To translate the new x and y values of
the points that define the drawn trend line, we need to convert them into SVG co-ordinates
(as mentioned before in Chapter 3.1) before updating these points.

controlTrendline <- function(value) {
showValue(value) # to show wvalue of the slider
value <- as.numeric(value)

#user defines what to do next (here, recalculates z and y)

4.2. EXAMPLES 43

x <- seq(min(iris$Petal.Width), max(iris$Petal.Width), length = 20)
lo <- loess(Petal.Length~Petal.Width, data = iris, span = value)
y <- predict(lo, x)

#convert coordinates and set points

panel <- findPanel('plot_01.xyplot.points.panel.1.1')

pt <- convertXY(x, y, panel)

setPoints("plot_01.loess.lines.panel.1.1", type = "coords", value = pt)

Once this is done, we need to pass this function to retrieve the value of the slider as it moves.
To do this, have a special function called sliderCallback. This redefines and creates the
entire function that is now called sliderValue.

pass defined function through sliderCallback to pass slider value correctly
sliderValue <- sliderCallback(controlTrendline)

Finally, we can link the sliderValue function back to the slider such that when the slider
moves, the trend line will be updated based upon the value of the slider as seen in Figure 4.9.

int <- list(oninput = "sliderValue")
addInteractions("slider", int)

4.2. EXAMPLES 44

[.
L
L]
.
L] L] [
8 — . . =
L] L]
] . .
. . [
. . . e [}
1 e
. .
1]
] .
(] e s 0 L]
5 - (] 3 =
[.
4

(L1
L]

L)
* 860 008

ae
. o0 o
esReee
.

Petal.Length
B
1
.

e e o0

* o8y o
]

]
® ssdees o
"l °

T T T T T T
0.0 0.5 1.0 1.5 2.0 25

Petal. Width

0.65

Figure 4.9: Plot with slider that controls the smoothness of the trend line

Another feature that the user may want to achieve is to be able to select a set of points and
compute a trend line using those specific points. To be able to do this, we need to add a new
element to the page to represent this special trend line. This can be done using the addLine
function. Here, we have added it to the same group where these points lie.

pointsPanel <- findPanel("plot_O1l.xyplot.points.panel.1.1")

addLine ("newSmooth", pointsPanel, class = "hello", list(stroke = "red",
stroke.width = "1",
fill = "none"))

Note that this appears to be hidden on the page, as the points of this line have not been
defined yet. Next, a new function needs to be defined to be able to compute this new smoother.

create new smoother

createSmooth = function(index) {
this returns the indices of the points selected
index <- as.numeric(unlist(strsplit(index, ",")))

filter selected points
if (length(index) > 20) {
selected <- iris[index,]

4.2. EXAMPLES 45

x <- seq(min(selected$Petal.Width), max(selected$Petal.Width), length = 20)
lo <<- loess(Petal.Length ~Petal.Width, data = selected, span = 1)
y <- predict(lo, x)
convert co-ordinates
pt <- convertXY(x, y, pointsPanel)
} else {
pt <- "n
}
setPoints("newSmooth", type = "coords", value = pt)

3

Because the index of the points need to be returned from the browser back to R, we use
boxCallback to help us link these functions together. As linking a selection box is a special
type of interaction, we can pass our defined function through to the addSelectionBox function
which adds on the selection box and links it together to compute the new smoother.

#link callback functions together to pass index values to function

boxIndex = boxCallback(createSmooth)

addSelectionBox(plotNum = 1, el = "plot_Ol.xyplot.points.panel.1.1",
f = "boxIndex")

@
Il

e o
oe

]
L.
o @
sl o
L}
ooee o e o
e L]
]

coge
T

- [°
5 ®]
(]]
o [
e o0
) ® o o
e o/e
&
°_/0 ()
[
e o
°

Petal.Length
-~
1
ae

e o oo
L

os0\0
o sooNg
e

L]
o880 0

1
e
T

T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Petal.Width

08

Figure 4.10: Plot that has a selection box feature that draws a separate smoother

4.8. COMPATIBILITY WITH OTHER GRAPHICS SYSTEMS 46

The user now can draw a selection box over a set of points, and a new smoother should render
on the page based upon these points (shown in Figure 4.10).

The notion of having special functions is required when there is a need for querying the browser
for more information (such as the value of the slider, or the points selected on a page). In the
box plot example in Section 4.2.1, the information was stored back in R which did not require
a special callback function. These types of interactions are more complex to handle.

4.3 Compatibility with other graphics systems

A useful feature of interactr is its compatibility with other R graphing systems including lattice,
graphics (also known as base R plots), and ggplot2.

Before we begin, we will briefly mention the two different graphics systems in R. One is known
as the graphics, the other known as grid . A major difference between the two systems is that
grid is not made to draw complete plots by a single function [Murrell, 2011]. Rather, it is
seen as a lower level graphics tool that has been used to build successful higher level plotting
packages, including lattice and ggplot2. Packages that are built on top of the grid system
can be accessible to the other grid tools available, including gridSVG and grlmport [Murrell,
2011]. Likewise, there are other tools that are only compatible with the graphics system. There
are many other packages that are built on top of these two major systems that make up the
graphics that we can produce in R.

The examples discussed so far with interactr have been done with lattice plots. However, it is
possible to achieve the same with other plotting systems. To demonstrate, we have taken the
box plot example in Figure 4.5 and replicated it using graphics and ggplot2.

4.3.1 graphics plots

As briefly mentioned in Chapter 3, in order to convert SVG objects using gridSVG the objects
must be grid objects. In the case of graphics plots, we cannot directly call gridSVG to convert
it into an SVG. A simple solution to this is to use the gridGraphics package [Murrell, 2015],
which acts as a translator by converting graphics plots into grid plots with a consistent naming
scheme. The grid.echo() function achieves this.

library(grid)

plot(1:10, 1:10)
grid.1ls()
gridGraphics::grid.echo()
grid.1s()

4.8. COMPATIBILITY WITH OTHER GRAPHICS SYSTEMS 47

10

1:10

1:10

10

1:10

1:10

Figure 4.11: An example of a graphics plot that is converted into a grid plot using gridGraphics

graphics-plot-1-points-1

graphics-plot-1-bottom-axis-line-1
graphics-plot-1-bottom-axis-ticks-1
graphics-plot-1-bottom-axis-labels-1
graphics-plot-1-left-axis-line-1

graphics-plot-l1-left-axis-ticks-1

graphics-plot-1-left-axis-labels-1
graphics-plot-1-box-1

graphics-plot-1-xlab-1

graphics-plot-1-ylab-1

4.8. COMPATIBILITY WITH OTHER GRAPHICS SYSTEMS 48

The code above produces a graphics plot that has been converted to a grid plot (as seen in
Figure 4.11). To check this, we have called grid.1s() to identify whether it is a grid object.
In the first call, it returns nothing because it is not a grid object. Once we call grid.echo(),
grid.1ls() returns a list of elements that make up the plot.

Another problem is that when we plot or try save it into a variable, it does not plot to the
graphics device. To solve this, we can use recordPlot to record the plot that has been drawn
to further process it [Murrell et al., 2015]. Thus, the only change that we need to do is run an
extra recordPlot command before we call listElements.

Once again, we begin by drawing the plot. We then record the plot before listing its elements.
This will automatically convert the plot using grid.echo(Q).

boxplot(iris$Sepal.Length, horizontal = TRUE)
pl <- recordPlot()
listElements(pl)

Next, the same process occurs. We see that the code is very similar to what was done previously
with lattice. We can use the same highlightPoints function defined back in the lattice
example.

identify box in box plot and send the plot to the browser

box = "graphics-plot-1-polygon-1"

interactions <- list(hover = styleHover(attrs = list(fill = "red",
fill.opacity = "1")))

draw(pl, box, interactions, new.page = TRUE)

range <- returnRange (box)

plot a graphics scatter plot
plot(iris$Sepal.Length, iris$Sepal.Width)
sp <- recordPlot()

listElements(sp)

draw(sp)

#add interactions

points <- 'graphics-plot-1-points-1'

boxClick <- list(onclick = "highlightPoints")
addInteractions(box, boxClick)

4.8. COMPATIBILITY WITH OTHER GRAPHICS SYSTEMS

49

4.0
I

o o

35

o oo
o oo
oo

iris$Sepal.Width

- oo
o

3.0

o ee

o
ocoe

oo
o

o

o o ooe e

o oo
° o
° eo
e o
eee coo
eecee O
eeo00

000 o
o
o oo

o

° e o o oo
® oo o o
eee ° o

25

20

6.0

iris$Sepal.Length

Figure 4.12: Box plot example replicated using a graphics plot

The same interaction has been achieved in Figure 4.12. This shows that there is potential for
customising interactions onto graphics plots. The process is the same, except for an additional
step to convert a graphics plot into a grid type plot.

4.3.2 ggplot2

ggplot2 [Wickham, 2009] is a popular plotting system in R based upon the “Grammar of
Graphics”. It is built upon the grid graphics system, which makes it compatible with gridSVG.

library(ggplot2)
p <- ggplot(data
p.elements <- listElements(p)

box <- findElement("geom_polygon.polygon")
styleHover (attrs

iris, aes(x = "", y = Sepal.Length)) + geom_boxplot ()

interactions <- list(hover list(£fill = "red",
fill.opacity = "1",

pointer.events = "all")))

draw(p, box, interactions, new.page = TRUE)

However, because it works on a completely different co-ordinates system, we cannot simply
use the returnRange function to define the range of the box.

The native coordinates given by grid do not return that data coordinates of the ggplot. A simple
solution to this is that the information about the plot can be extracted from ggplot_build.
Below, we have manually identified the range of the box.

4.8. COMPATIBILITY WITH OTHER GRAPHICS SYSTEMS 50

find the range of the bozx
boxData <- ggplot_build(p)$datal[1]]
range <- c(boxData$lower, boxData$upper)

Next, we add the scatterplot to the page.

sp <- ggplot(data = iris, aes(x = Sepal.Width, y =Sepal.Length)) + geom_point()
sp.elements <- listElements(sp)
draw(sp)

The difference is the naming of these grid elements do not have a clear structure in ggplot2.
To locate the points on the plot, we can use findElement to return the element corresponding
to these points.

points <- findElement('"geom_point.point")

Next, we can use the same function highlightPoints defined before sending these interactions
to the browser (Figure 4.13).

#using highlightPoints defined previously in 3.1
boxClick <- list(onclick = "highlightPoints")
addInteractions(box, boxClick)

Sepal.Length

Sepal.Length

Sepal. Width

Figure 4.13: Box plot example replicated using a plot rendered with ggplot2

This demonstrates that there is a possible way of achieving interactions with ggplot2. Because
this is a simplistic example, it may become more complex when we try to achieve more
sophisticated interactions.

The interactr package acts as a proof-of-concept and a starting point for what aims to be a

4.8. COMPATIBILITY WITH OTHER GRAPHICS SYSTEMS 51

general solution for adding simple interactions to plots generated in R. There is potential in
plugging into different plotting systems, however it depends on how compatible these systems
are with the underlying tools of the interactr package. But the most commonly used systems
are covered by our examples. The process is based upon defining what you want to draw in R,
identifying elements drawn, and defining specific interactions to attach to certain elements
drawn that can be viewed in a web browser. Next, we discuss the limitations and future
directions of using this process as a way of creating web interactive graphics.

Chapter 5

Discussion

The interactr package provides a way of generating simple interactive R plots that can be
viewed in a web browser. It is advantageous in the sense that we can define and customise
interactions with flexibility. It can also achieve unidirectional linking between plots. However,
there are many limitations present with its current implementation and is not yet recommended
for general use. But it does have potential to be further developed in the future. In this
section we will discuss the advantages (Section 5.1) and limitations of this method (Section
5.2), and further compare it to existing tools (Section 5.3) where we also briefly comment on
future directions for developing interactr.

5.1 Advantages

The idea of interactr is inspired from finding an easier way to customise certain interactions
onto plots drawn in R without the need to learn JavaScript. It takes advantage of R’s flexible
graphics system and caters for both graphics and grid plots.

Using the DOM package allows us to use R to recompute and do calculations that originally
cannot be done in JavaScript, such as recomputing densities on a plot based upon a selec-
tion. Below is an example of changing density plots based upon what the user has selected
(Figure 5.1).

52

5.2. LIMITATIONS 53

Densities for each species based on sepal length

S
] . : .
e o o .
© .
2
T
. -
. . . N
o .
™~ LN]
. .
. .o . g —
[y
Y] s o
% © p o oo
. peoe L
ﬂE) . L] %‘ 0
- o ° M 5 =
8 o7 ° : e
K3 .
.
5 <
[° -
o | H
[v]
° L] : [] °
.
wn
2
e |
S
T T T T T T T T T T
20 25 3.0 3.5 4.0 4 5 6 7 8
Sepal Width Sepal Length

Figure 5.1: Different selections (left) recompute different densities (right) with interactr

The main advantage for identifying graphical elements to data is that we have more flexibility
in targeting sub components of a plot. A prime example of an interaction that is difficult to
implement across other tools is linking a part of the box plot to other plots (seen in Section
4.2.1).

Another advantage is that we are able to add layers on top of plots and draw shapes that can
help provide more information. This cannot be easily done by the existing tools as it requires
information on how these plots are layered and rendered. With gridSVG underneath to provide
a clear mapping structure of these layers, we can add on elements to existing plots on the web
page to show more about a user’s interaction such as a selection or a click. They can also be
used to highlight regions and draw new elements. The is exemplified in the trend line example
in Section 4.2.2, where an additional smoother can be added to the plot.

interactr can be used to create links between plots via clicks and selection boxes. Here, a single
plot can control the rest of the plots. It may be possible to create multi-directional links,
but this becomes more complex to co-ordinate. It is a success in its own for providing basic
interactions to any type of plot drawn in R. However, there are still many limitations with its
current implementation.

5.2 Limitations

With gridSVG, one major limitation is that only grid objects can be converted into SVG. This
limits us to plots that must be drawn in R to a graphics device before it can be sent to the

5.2. LIMITATIONS 54

browser. A further limitation is that gridSVG is relatively slow when we try to convert a plot
made up of many elements. Currently, work is proceeding to make gridSVG faster.

Because interactr is mainly built upon the DOM package, many of the limitations of DOM
highlighted in Section 3.2 are carried over. Applications made with DOM are generated for
a single user in a single session only. Furthermore, because the DOM package is still under
development, it cannot be used for production purposes yet. Just as shiny applications require
a shiny server for them to be hosted on the web, DOM would require something similar to
allow for applications to be shared and accessed. A few trials using a shiny server have been
successful, but these only act as a provisional solution. Furthermore, because the underlying
system involving requests being sent between R and the web browser, this can be slower than
plots that are driven fully by JavaScript.

There are further limitations with its current implementation. The approach is based upon the
graphical elements produced. This requires the user to be able to link the particular elements
of the data which is more tedious than the existing tools discussed in Section 2 that link data
to graphical elements on the page. The user must call listElements before sending the plot
to the browser as it prints the plot to a current device and returns a list of elements that make
up the plot. This is crucial for plotting systems that do not have a consistent naming scheme.
If we reprint the plot, the tags will constantly change which may cause a mismatch between
element matching between the plot on the web and the plot in R. This occurs with ggplot2,
where if we re-plot with the exact same command, the names of these elements change every
time. Another problem with using listElements is that the user will need to deduce which
element corresponds to what is seen on the plot. The naming for these objects in by these
plotting systems may not be clear. If it is a plot that is made directly from grid where the user
has named everything clearly, then this is not a problem. The code below shows the difference
between the naming scheme in lattice (Figure 5.2) and ggplot2 (Figure 5.3).

Listing the elements from a plot produced with lattice:

sp <- xyplot(Petal.Length ~ Petal.Width, data = iris)
listElements(sp)

5.2. LIMITATIONS

7 1 o -
0o O
%5 ° o g
— o —
6 o 0 9908 ¢
o 8 g o g o
o
0 45 0 o
o 51 §°0388 -
= o, 8 83
o o B388o0oo
S g ¢ o
- 4 g 8°%o B
E e85,
3] o
o 3 - o =
1 2280 I
o
R
14 ©o -
T T T T T T
0.0 0.5 1.0 1.5 2.0 25
Petal.Width

Figure 5.2: Listing the elements of a plot using lattice

plot_O1.background

plot_01.xlab

plot_01l.ylab
plot_Ol.ticks.top.panel.1.1
plot_O1l.ticks.left.panel.1l.1
plot_Ol.ticklabels.left.panel.1.1
plot_O1l.ticks.bottom.panel.1.1
plot_Ol.ticklabels.bottom.panel.1.1
plot_O1l.ticks.right.panel.1.1
plot_Ol1l.xyplot.points.panel.1l.1
plot_Ol.border.panel.1.1

Listing the elements from a plot produced with ggplot2:

p <- ggplot(iris) + aes(x = Petal.Width, y = Petal.Length) + geom_point ()
listElements(p)

5.2. LIMITATIONS

56

o L,
a .
. °
6- O . . L
. . ° o .
° e !o °
: §
f oot -
< ° !!o
"? o;o e o
° .
[}
-4 3 '] H °
f . 5
o} °
o [)
.
2- ° °
. ‘ ° .
0§ !
® .
0.0 0.5 1.0 1.5 2.0 25
Petal. Width

layout
backgr
panel.
gril

Figure 5.3: Listing the elements of a plot using ggplot2

ound.1-7-10-1
6-4-6-4
l.gTree.1111

panel.background. .rect.1102
panel.grid.minor.y..polyline.1104

pa
pa

pa
NULL
geom
NULL
pane
spacer

spacer.

spacer

spacer.
axis-t.

axis-1

axis.

axis
ax

ax

nel.grid.minor.x..polyline.1106

nel.grid.major.y..polyline.1108
nel.grid.major.x..polyline.1110
_point.points.1098

1l.border. .zeroGrob.1099
.7-5-7-5

7-3-7-3

.5-56-5-5

5-3-5-3

5-4-5-4

.6-3-6-3
line.y.left..zeroGrob.1124
is.1-1-1-1

GRID.text.1121

is.1-2-1-2

5.2. LIMITATIONS 57

axis-r.6-5-6-5
axis-b.7-4-7-4
axis.line.x.bottom. .zeroGrob.1117
axis
axis.1-1-1-1
axis.2-1-2-1
GRID.text.1114
xlab-t.4-4-4-4
xlab-b.8-4-8-4
GRID.text.1128
ylab-1.6-2-6-2
GRID.text.1131
ylab-r.6-6-6-6
subtitle.3-4-3-4
title.2-4-2-4
caption.9-4-9-4

Another limitation is the number of interactions that can be attached. So far, the examples
expressed in Section 4.2 require a single element to be controlled and assumes that each grid
object listed corresponds to a single SVG element. We can attach many interactions and
events to a single element at a time, but not many elements to many different interactions
at once. There is a need for a more flexible system when dealing with multiple interactions
for achieving more complex interactions. Furthermore, only one kind of interaction can be
expressed for a single event. This means that the function created by the user must be fully
defined in a single function rather than multiple functions. For example, if a hover requires
both adding a tooltip and to turn the element red, then this would need to be written as a
single function as we can only attach one to each event.

Code must also be written in a certain order to work. Plots in R must be drawn to a graphics
device before being sent to the browser, while a new web page must be set up before we can
start adding elements and interactions to the page. These devices must still be open in order
to communicate and retrieve existing information about the plot. In cases of dealing with
multiple plots, one of the disadvantages is that we lose information about the previous plot
in R. This means that the user is required to identify what kind of information they need to
extract before they move onto the next plot. This is demonstrated in the example in section
4.2.1 of linking a box plot to other plots together. Before the user can move onto the scatter
plot, the range of the box and viewports were stored in order to be used in the defined function.
This means that we cannot jump back and forth between plots. A possible solution to this
is to store the information about each plot that is sent to the web browser so that it can be
retrieved by the user if needed in R. Another approach would be to plot all necessary plots in
a single window which would eliminate the need for this.

A further assumption that the interactr package currently has is that the native units in
grid represent the data values that are plotted. As discussed in Section 4.3.2, ggplot2 uses a
different co-ordinate system and this assumption does not hold. Instead, we need to take a

5.8. COMPARISON TO EXISTING TOOLS 58

detour and get the data values that are stored in ggplot_build().

5.3 Comparison to existing tools

interactr‘s main point of difference is the ability to replicate plots or objects drawn in R (in
both graphics systems) and to achieve on-plot and off-plot interactivity. shiny can do this
but you cannot easily attach specific interactions as the whole plot is rendered as a single
raster image file (such as a png). Furthermore, many of these existing tools rely on the shiny
framework. As highlighted in Section 2.3, one of the major disadvantages that shiny possesses is
a tendency to recompute and redraw entire plots whenever an input changes. In interactr, only
the part of the plot that the user specifically targets is modified and customised interactions
can be achieved. It provides a possible way of linking different types of plots together, whereas
existing tools, specifically crosstalk, have focused on linked brushing between 'row-observation’
data. To put this into perspective, the simple example of linking box plots to other types of
plots in Figure 4.5 is an interaction that is difficult to achieve without expert knowledge of
their respective APIs.

In comparison to the existing tools discussed in Section 2, interactr has a more complex API
for users. The main reason for this is to increase flexibility across creating different types of
interactions. But this is entirely developmental. In comparison to using DOM and gridSVG
directly, it provides convenience for certain processes, such as drawing an SVG plot and adding
elements to the web page and styling hovers. Currently, only certain interactions highlighted
in Section 4.2 can be achieved.

There is potential for designing a more simpler and structured API that is more intuitive for
developers and users. An example to highlight this is changing the bandwidth of a density
plot (shown below with interactr in Figure 5.4). This example has been replicated with ggvis
(Figure 5.5), shiny (Figure 5.6), and with plotly+shiny (Figure 5.7). The animint package will
not be able to do this because it is restricted to clicks and selection.

5.8. COMPARISON TO EXISTING TOOLS

59

Density plot of heights

Density
0.04 0.06 0.08 0.10 0.12
] I | 1 1

0.02
1

0.00
|

T T T T T T T
80 100 120 140 160 180 200

Heights (cm)

0.35

Figure 5.4: Control density bandwidth with interactr

5.8. COMPARISON TO EXISTING TOOLS 60

0.06 -

0.05

0.04 4

Sty

§0.03
o

0.024

0.01+

0.00

T T T T T T T
80 100 120 140 160 180 200
height

Figure 5.5: Control density bandwidth with ggvis

Density plot of heights

Density
0.04
I

0.01
|

T T T T T T T
80 100 120 140 160 180 200

Heights (cm)

Bandwidth

0.1 (0.42] 1

Figure 5.6: Control density bandwidth with shiny

5.8. COMPARISON TO EXISTING TOOLS 61

75 100 125 150 175 200
height
Bandwidth

041 0.57] 1

Figure 5.7: Control density bandwidth using plotly (rendered with ggplot2) and shiny

Approximate
number of lines Redraws/reproduces Scale of axes Plot type
Tool of code entire plot change rendered
interactr 18 No No base R
(DOM+-gridSVG+grid)
ggvis 3 No Yes Vega
plotly+shiny 10 Yes Yes geplot2 (via
ggplotly)
shiny 10 Yes Yes base R

Table 5.1: A comparison table between existing tools and interactr on changing the bandwidth
of a density plot

From replicating each example, we find that the interactr package will not change the scale of
its axes when the bandwidth is changed. This is because we are only updating the density line
relative to the coordinates of the axes. In comparison to the rest of the tools, more lines of
code are required to generate the same effect, and those involving shiny reproduce the entire

plot every time.

Because many of these existing tools are still being developed, it is likely that they will resolve
some of the limitations discussed in Section 2 in the future. However, they require the user
to be very familiar with their APIs. An example of this is the plotly package that has been
expanded further into achieving linking between other types of plots and the ability to prevent
redrawing when used with shiny. It requires the user to know both the plotly API, shiny, and
the plotlyProxy() functions [Sievert, 2017b] as briefly mentioned in Section 2.3.2. The same
applies for interactr. There is still a long way to go before we are confident enough to claim

5.4. FUTURE DIRECTIONS 62

that users would not need to know DOM, grid, and gridSVG.

5.4 Future directions

The problem of handling large number of individual objects in a plot remains unresolved
as the browser cannot handle too many SVG elements at once. This is a general problem
that occurs across all existing tools. A solution is to render using webGL and HTML canvas
environments which allow for many elements to be rendered without compromising speed.
However, the problem with this is that it is not as straightforward to attach events to these
elements. This is because they generally treated as a single object thus making it difficult to
address sub-components.

There is potential in developing interactr further to try achieve complex interactions that are
more useful in exploratory data analysis. Currently, it is only a proof-of-concept prototype and
still undeveloped in many areas. Only a very small number of examples have been successful
and a limited number of interactions have been implemented. There is still a need for a simpler
and versatile system for users without compromising the flexibility in which the user can define
interactions and interactr is a step along this path. Other possible ideas may that may be
incorporated include integrating plots with D3 and other htmlwidgets to achieve special effects
such as zooming and panning of a plot and to achieve multi-directional linking. It may become
compatible with iNZight which also uses the grid system to produce its plots. However, this
requires assessment on how the underlying grid objects are named and drawn before being
implemented.

5.5 Conclusion

There is a need in expanding web interactive graphics to create better data visualisations for
users. Despite having many tools available including plotly, ggvis, shiny and animint and many
other packages that produce htmlwidgets, these generally produce standard interactive plots
outside of R that are hard to customise. Our new tool interactr provides a way of driving
interactions without the need of learning web technologies while utilising the power of R’s
statistical computing to aid changes in plots originally drawn in R. However, more assessment
and development is required on building more informative interactive visualisations before it
can catch up to the capabilities of older desktop applications.

5.6 Additional resources

The interactr package is currently hosted on Github here: https://github.com/ysoh286 /interactr

https://github.com/ysoh286/interactr

5.6. ADDITIONAL RESOURCES 63

To install interactr, you need to install DOM v0.4:

install.packages("https://github.com/pmur002/D0OM/archive/v0.4.tar.gz",
repos = NULL, type = "source")
devtools: :install_github('ysoh286/interactr')

For more details about this project, visit this repository which contains code and additional
notes: https://github.com/ysoh286/honours-project-2017

To view the online version of this report with interactive examples: https://ysoh286.github.io/
honours-project-2017/

https://github.com/ysoh286/honours-project-2017
https://ysoh286.github.io/honours-project-2017/
https://ysoh286.github.io/honours-project-2017/

Bibliography

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents. IEEFE
Transactions on Visualization and Computer Graphics, 17(12):2301-2309, December 2011.
ISSN 1077-2626. doi: 10.1109/TVCG.2011.185. URL http://dx.doi.org/10.1109/TVCG.
2011.185.

CensusAtSchool. CensusAtSchool 2009 data subset, 2009. URL http://new.censusatschool.org.
nz/resource/2009-censusatschool-data-subset/. Accessed October 10th, 2017.

Winston Chang and Hadley Wickham. gguis: Interactive Grammar of Graphics, 2016. URL
https://CRAN.R-project.org/package=ggvis. R package version 0.4.3.

Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPherson. shiny: Web
Application Framework for R, 2017. URL https://CRAN.R-project.org/package=shiny. R
package version 1.0.5.

Joe Cheng. crosstalk: inter-widget interactivity for htmlwidgets, 2016. URL https://CRAN.
R-project.org/package=crosstalk,https://rstudio.github.io/crosstalk/. R package version
1.0.0.

Joe Cheng. promises: What the Package Does (Title Case), 2017a. R package version
0.1.0.9000.

Joe Cheng. Async programming in R and shiny, 2017b. URL https://medium.com/@Qjoe.
cheng/async-programming-in-r-and-shiny-ebe8c5010790. Accessed October 10th, 2017.

Joe Cheng, Bhaskar Karambelkar, and Yihui Xie. leaflet: Create Interactive Web Maps with
the JavaScript ’Leaflet’ Library, 2017. URL http://rstudio.github.io/leaflet/. R package
version 1.1.0.9000.

Dianne Cook and Deborah F. Swayne. Interactive and Dynamic Graphics for Data Analysis
- With R and GGobi. Use R. Springer, 2007. ISBN 978-0-387-71761-6. doi: 10.1007/
978-0-387-71762-3. URL https://doi.org/10.1007/978-0-387-71762-3.

Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008. ISBN 0596517742.

Tom Elliott and Marco Kuper. iNZight: iNZight GUI for Data Ezploration and Visualisation,
2017. URL https://www.stat.auckland.ac.nz/~wild /iNZight /index.php. R package version
3.1.2.

64

http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://new.censusatschool.org.nz/resource/2009-censusatschool-data-subset/
http://new.censusatschool.org.nz/resource/2009-censusatschool-data-subset/
https://CRAN.R-project.org/package=ggvis
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=crosstalk, https://rstudio.github.io/crosstalk/
https://CRAN.R-project.org/package=crosstalk, https://rstudio.github.io/crosstalk/
https://medium.com/@joe.cheng/async-programming-in-r-and-shiny-ebe8c5010790
https://medium.com/@joe.cheng/async-programming-in-r-and-shiny-ebe8c5010790
http://rstudio.github.io/leaflet/
https://doi.org/10.1007/978-0-387-71762-3
https://www.stat.auckland.ac.nz/~wild/iNZight/index.php

BIBLIOGRAPHY 65

Markus Gesmann and Diego de Castillo. googlevis: Interface between r and the google
visualisation api. The R Journal, 3(2):40-44, December 2011. URL https://journal.r-project.
org/archive/2011-2/RJournal 2011-2 Gesmann+de~Castillo.pdf.

Ryan Hafen. rbokeh version 0.5.0 released, 2016. URL http://ryanhafen.com/blog/rbokeh-0-5-0.
Accessed October 10th, 2017.

Ryan Hafen and Inc. Continuum Analytics. rbokeh: R Interface for Bokeh, 2016. URL
https://CRAN.R-project.org/package=rbokeh. R package version 0.5.0.

Mark Heckmann. Sending data from client to server and back us-
ing shiny, 2013. URL https://ryouready.wordpress.com/2013/11/20/
sending-data-from-client-to-server-and-back-using-shiny /. Accessed October 10th,
2017.

Toby Dylan Hocking, Susan VanderPlas, Carson Sievert, Kevin Ferris, Tony Tsai, and Faizan
Khan. animint: Interactive animations, 2017. URL https://github.com/tdhock/animint. R
package version 2017.01.04.

Ross Thaka and Robert Gentleman. R: A Language for Data Analysis and Graphics. Journal
of Computational and Graphical Statistics, 5(3):299-314, 1996.

Daniel Jacobson, Greg Brail, and Dan Woods. APIs: A Strateqy Guide. O’Reilly Media, Inc.,
2011. ISBN 1449308929, 9781449308926.

Joshua Kunst. highcharter: A Wrapper for the ’Highcharts’ Library, 2017. URL https:
//CRAN.R-project.org/package=highcharter, https://github.com/jbkunst /highcharter. R
package version 0.5.0.

Scott Murray. Interactive Data Visualization for the Web. O’Reilly Media, Inc., 2013. ISBN
1449339735, 9781449339739.

Paul Murrell. R Graphics. CRC Press, Inc., Boca Raton, FL, USA, 2nd edition, 2011. ISBN
1439831769, 9781439831762.

Paul Murrell. gridGraphics: Redraw Base Graphics Using ’grid’ Graphics, 2015. URL
https://CRAN.R-project.org/package=gridGraphics. R package version 0.1-5.

Paul Murrell. DOM: Interact with Web Browser DOM, 2016a. R package version 0.5-1.

Paul Murrell. An Introduction to the 'DOM’ Package, 2016b. URL https://www.stat.auckland.
ac.nz/~paul/Reports/DOM /Intro/DOM-Intro.html. Accessed 10th October, 2017.

Paul Murrell and Simon Potter. Working with the ¢gridSVG Coordinate System, 2012.
URL https://www.stat.auckland.ac.nz/~paul/Reports/gridSVGcoords/coordinates.html.
Accessed October 10th, 2017.

Paul Murrell and Simon Potter. The gridsvg package. R Journal, 6(1):133 — 143, 2014. ISSN
20734859. URL https://journal.r-project.org/archive/2014/RJ-2014-013 /RJ-2014-013.pdf.

https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Gesmann+de~Castillo.pdf
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Gesmann+de~Castillo.pdf
http://ryanhafen.com/blog/rbokeh-0-5-0
https://CRAN.R-project.org/package=rbokeh
https://ryouready.wordpress.com/2013/11/20/sending-data-from-client-to-server-and-back-using-shiny/
https://ryouready.wordpress.com/2013/11/20/sending-data-from-client-to-server-and-back-using-shiny/
https://github.com/tdhock/animint
https://CRAN.R-project.org/package=highcharter, https://github.com/jbkunst/highcharter
https://CRAN.R-project.org/package=highcharter, https://github.com/jbkunst/highcharter
https://CRAN.R-project.org/package=gridGraphics
https://www.stat.auckland.ac.nz/~paul/Reports/DOM/Intro/DOM-Intro.html
https://www.stat.auckland.ac.nz/~paul/Reports/DOM/Intro/DOM-Intro.html
https://www.stat.auckland.ac.nz/~paul/Reports/gridSVGcoords/coordinates.html
https://journal.r-project.org/archive/2014/RJ-2014-013/RJ-2014-013.pdf

BIBLIOGRAPHY 66

Paul Murrell and Simon Potter. ¢ridSVG: Export ’grid’ Graphics as SVG, 2017. URL
https://CRAN.R-project.org/package=gridSVG. R package version 1.5-1.

Paul Murrell, Jeroen Ooms, and JJ Allaire. Recording and replaying the graphics engine display
list, 2015. URL https://www.stat.auckland.ac.nz/~paul/Reports/DisplayList/dl-record.html.
Accessed October 10th, 2017.

RStudio. shiny, 2017a. URL https://shiny.rstudio.com/. Accessed October 10th, 2017.

RStudio. Interactive plots, 2017b. URL https://shiny.rstudio.com/articles/plot-interaction.
html, https://shiny.rstudio.com/articles/plot-interaction-advanced.html. Accessed October
10th, 2017.

RStudio. Shiny server, 2017c. URL https://www.rstudio.com/products/shiny/shiny-server/.
Accessed October 10th, 2017.

RStudio. Selecting rows of data, 2017d. URL https://shiny.rstudio.com/articles/
selecting-rows-of-data.html. Accessed October 10th, 2017.

Carson Sievert. plotly for R. 2017a. URL https://plotly-book.cpsievert.me/. Accessed October
10th, 2017.

Carson Sievert. plotly 4.7.1 now on CRAN, 2017b. URL http://moderndata.plot.ly/
plotly-4-7-1-now-on-cran/. Accessed October 10th, 2017.

Carson Sievert, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Co
rvellec, and Pedro Despouy. plotly: Create Interactive Web Graphics via ’plotly.js’. URL https:
//plot.ly/r https:/ /cpsievert.github.io/plotly _book/ https://github.com/ropensci/plotly. R
package version 4.5.6.9000.

Martin Theus. Interactive data visualization using mondrian. Journal of Statistical Software,
Articles, 7(11):1-9, 2002. ISSN 1548-7660. doi: 10.18637/jss.v007.i11. URL https://www.
jstatsoft.org/v007/il1.

Trifacta. Vega, 2014. URL https://vega.github.io/vega/. Accessed October 10th, 2017.

Antony Unwin, Martin Theus, and Heike Hofmann. Graphics of Large Datasets: Visualizing a
Million (Statistics and Computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006. ISBN 0387329064.

Simon Urbanek and Tobias Wichtrey. iplots: iPlots - interactive graphics for R, 2013. URL
https://CRAN.R-project.org/package=iplots. R package version 1.1-7.

Ramnath Vaidyanathan. rCharts: Interactive Charts using Javascript Visualization Libraries,
2013. R package version 0.4.5.

W3C. Document Object Model (DOM), 2009. URL https://www.w3.org/DOM/. Accessed
October 10th, 2017.

W3C. HTML and CSS, 2016. URL https://www.w3.org/standards/webdesign /htmlcss.
Accessed October 10th, 2017.

https://CRAN.R-project.org/package=gridSVG
https://www.stat.auckland.ac.nz/~paul/Reports/DisplayList/dl-record.html
https://shiny.rstudio.com/
https://shiny.rstudio.com/articles/plot-interaction.html, https://shiny.rstudio.com/articles/plot-interaction-advanced.html
https://shiny.rstudio.com/articles/plot-interaction.html, https://shiny.rstudio.com/articles/plot-interaction-advanced.html
https://www.rstudio.com/products/shiny/shiny-server/
https://shiny.rstudio.com/articles/selecting-rows-of-data.html
https://shiny.rstudio.com/articles/selecting-rows-of-data.html
https://plotly-book.cpsievert.me/
http://moderndata.plot.ly/plotly-4-7-1-now-on-cran/
http://moderndata.plot.ly/plotly-4-7-1-now-on-cran/
https://plot.ly/r, https://cpsievert.github.io/plotly_book/, https://github.com/ropensci/plotly
https://plot.ly/r, https://cpsievert.github.io/plotly_book/, https://github.com/ropensci/plotly
https://www.jstatsoft.org/v007/i11
https://www.jstatsoft.org/v007/i11
https://vega.github.io/vega/
https://CRAN.R-project.org/package=iplots
https://www.w3.org/DOM/
https://www.w3.org/standards/webdesign/htmlcss

BIBLIOGRAPHY 67

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2009. ISBN 978-0-387-98140-6. URL http://ggplot2.org.

Hadley Wickham and Winston Chang. Interactivity, 2016. URL http://ggvis.rstudio.com/
interactivity.html. Accessed October 10th, 2017.

Leland Wilkinson. The Grammar of Graphics (Statistics and Computing). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2005. ISBN 0387245448.

Yihui Xie. DT: A Wrapper of the JavaScript Library ’DataTables’; 2016. URL http://rstudio.
github.io/DT. R package version 0.2.12.

http://ggplot2.org
http://ggvis.rstudio.com/interactivity.html
http://ggvis.rstudio.com/interactivity.html
http://rstudio.github.io/DT
http://rstudio.github.io/DT

	Abstract
	Executive Summary
	Acknowledgements
	Introduction
	The need for interactive graphics
	The web and its main technologies
	Motivational problem

	An overview of tools for achieving web interactive plots in R
	plotly
	Extending interactivity with crosstalk

	ggvis
	shiny
	Interactivity with shiny
	Linking plotly or ggvis with shiny

	animint
	Summary

	Interactive R plots using lower level tools
	gridSVG
	Customising simple plot interactions
	Preventing redraws in shiny using JavaScript messages and gridSVG

	DOM package
	Comparing DOM to shiny

	Designing a more flexible way of producing simple interactions
	The main idea using grid, gridSVG and DOM
	Examples
	Linking box plots
	Changing the degree of smoothing of a trend line

	Compatibility with other graphics systems
	graphics plots
	ggplot2

	Discussion
	Advantages
	Limitations
	Comparison to existing tools
	Future directions
	Conclusion
	Additional resources

